Seat No.

# S.E. (Bio-Medical Engineering) (Part – I) (New CBCS) Examination, 2018 **ENGINEERING MATHEMATICS – III**

Day and Date: Thursday, 3-5-2018

Max. Marks: 70

Time: 2.30 p.m. to 5.30 p.m.

Instructions: 1) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book Page No. 3. Each question carries one mark.

- 2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.
- 3) Figures to right indicate full marks.
- 4) Assume suitable data whenever necessary.

### MCQ/Objective Type Questions

**Duration: 30 Minutes** Marks: 14

1. Choose the correct answer:

 $(14 \times 1 = 14)$ 

a) 
$$\frac{1}{\left(s+1\right)^2}$$

b) 
$$-\frac{1}{(s+1)^2}$$

c) 
$$\frac{s}{(s+1)^2}$$

a) 
$$\frac{1}{(s+1)^2}$$
 b)  $-\frac{1}{(s+1)^2}$  c)  $\frac{s}{(s+1)^2}$  d)  $-\frac{s}{(s+1)^2}$ 

2) 
$$L^{-1}\left\{\frac{s-4}{(s-4)^2+5^2}\right\} =$$

- a)  $e^{4t} \sin 5t$  b)  $e^{-4t} \sin 5t$  c)  $e^{4t} \cos 5t$  d)  $e^{-4t} \cos 5t$

3) 
$$L^{-1}\left\{\frac{1}{3s-1}\right\} =$$

- a) e<sup>t</sup>
- b)  $\frac{e^{\frac{t}{3}}}{3}$  c)  $\frac{e^{t}}{3}$
- d)  $\frac{e^{-\frac{1}{3}}}{3}$

4) If  $L\{f(t)\} = \Phi(s)$  then  $L\{f(at)\}$  is

- a)  $\Phi\left(\frac{s}{a}\right)$  b)  $\frac{1}{s}\Phi\left(\frac{s}{a}\right)$  c)  $\frac{1}{a}\Phi\left(\frac{s}{a}\right)$  d)  $\Phi'\left(\frac{s}{a}\right)$

5) Cauchy-Riemann equations for f(z) to be analytic are

a)  $u_{x} = v_{x}$ ,  $u_{y} = -v_{y}$ 

b)  $u_{x} = v_{y}, u_{y} = -v_{x}$ 

c)  $u_{x} = -v_{x}, u_{y} = v_{y}$ 

d)  $u_{x} = -v_{y}, u_{y} = v_{x}$ 

| 6) | A function $\Phi(x,$ | y) having   | continuous | partial | derivatives | of the | first | and | second |
|----|----------------------|-------------|------------|---------|-------------|--------|-------|-----|--------|
|    | order is called h    | narmonic fu | unction if |         |             |        |       |     |        |

a) 
$$\nabla \Phi = 0$$

b) 
$$\nabla \Phi \neq 0$$

c) 
$$\nabla^2 \Phi = 0$$

d) 
$$\nabla^2 \Phi \neq 0$$

- 7) The mapping w = f(z) is conformal if
  - a) f(z) is analytic and f'(z) = 0
  - b) f(z) is analytic and  $f'(z) \neq 0$
  - c) f(z) is not analytic and  $f'(z) \neq 0$
  - d) None of these
- 8) Fourier expansion of an even function in the range  $(-\pi, \pi)$  has
  - a) Only sine terms
  - b) Only cosine terms
  - c) Both sine and cosine terms
  - d) None
- 9) If  $f(x) = x^4$  in (-1, 1), then the Fourier coefficient  $b_n$  is equal to
  - a) ·

b) π

c) 0

- d) None
- 10) For the function  $f(x) = \begin{cases} -k, & -\pi < x < 0 \\ k, & 0 < x < \pi \end{cases}$  the value of  $a_0$  in Fourier expansion will be . . .
  - a) k

b) 2k

c) 0

- d) –k
- 11) In the mapping  $W = \frac{1}{z}$  the interior of the unit circle |z| = 1 is mapped onto
  - a) The interior of the unit circle
- b) The boundary of the unit circle

c) On the x-axis

- d) On the exterior of the unit circle
- 12) The value of integration,  $\int_{c} \frac{\sin z}{z} dz$ , C: |z| = 1 is
  - a) 0

b) πi

c)  $-\pi i$ 

d)  $-2\pi i$ 

- 13) If  $f(z) = \overline{z}$ , then f'(z)
  - a) equal to 1

b) equal to 0

c) does not exist

- d) equal to -1
- 14) In the mapping w = 4z, the region x = 0, y = 0, x + y = 1 is transformed into
  - a) a square

b) a circle

c) a triangle

d) none of these



Seat No.

# S.E. (Bio-Medical Engineering) (Part – I) (New CBCS) Examination, 2018 ENGINEERING MATHEMATICS – III

Day and Date: Thursday, 3-5-2018 Marks: 56

Time: 2.30 p.m. to 5.30 p.m.

**Instructions**: 1) Figures to the **right** indicate **full** marks.

2) Assume suitable data whenever necessary.

SECTION - I

### 2. Attempt any four:

 $(4 \times 4 = 16)$ 

- 1) Find the Laplace transform of e4t sin3t.
- 2) Find the Laplace transform of  $f(t) = t^2$ , 0 < t < 2, where f(t) is a periodic function with period 2.
- 3) Find the  $L^{-1} \left\{ \frac{1}{2} log \left( \frac{s^2 + 2^2}{s^2 + 3^2} \right) \right\}$ .
- 4) Find k such that  $\frac{1}{2}log(x^2 + y^2) + itan^{-1}\frac{kx}{y}$  is analytic.
- 5) Find the Laplace transform of  $e^{-4t} \int_0^t u \sin 3u du$ .

# 3. Attempt any two:

(6×2=12)

- 1) Solve using Laplace transform  $\frac{d^2y}{dt^2} + 4\frac{dy}{dt} + 8y = 1$ , where y(0) = 0, y'(0) = 1.
- 2) Find the orthogonal trajectories of the family of the curve  $3x^2y y^3 = c$ .
- 3) Find  $L^{-1}\left\{\frac{s^2}{\left(s^2+1\right)\left(s^2+4\right)}\right\}$  by convolution theorem.

# 

#### SECTION - II

4. Attempt any four:

 $(4 \times 4 = 16)$ 

- 1) Find the image of the circle  $(x-3)^2 + y^2 = 2$  under the transformation  $w = \frac{1}{z}$ .
- 2) Obtain Fourier series of  $f(x) = \begin{cases} \pi x & 0 \le x \le 1 \\ \pi(2-x) & 1 \le x \le 2 \end{cases}$  with period 2.
- 3) Find half range fourier sine series of f(x) = x(2 x) in 0 < x < 2.
- 4) Evaluate  $\int_0^{1+i} (x^2 iy) dz$ , along (i) the line y = x (ii) the parabola  $y = x^2$ .
- 5) Evaluate  $\oint_C \frac{z^2+z+1}{z-1} dz$ , where C is contour (i) z=1, (ii)  $|z|=\frac{1}{2}$ .
- 5. Attempt any two:

 $(6 \times 2 = 12)$ 

- 1) Find the half range sine series for  $f(x) = \begin{cases} \frac{1}{2} + x, & -\frac{1}{2} < x < 0 \\ \frac{1}{2} x, & 0 < x < \frac{1}{2} \end{cases}$
- 2) Find the Fourier series for  $f(x) = \frac{\pi x}{2}$  in the interval  $(0, 2\pi)$ . Also prove that

$$\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots$$

3) Find the bilinear transformation which maps the points z = 0, -i, -1 onto the points w = i, 1, 0.

|    |  |   |   |    |    | ĺ |
|----|--|---|---|----|----|---|
| ШШ |  | Ш | Ш | ШШ | ШШ |   |

**SLR-TC - 429** 

| Seat |  |
|------|--|
| No.  |  |

# S.E. (Bio-Medical Engineering) (Part – I) (New CBCS) Examination, 2018 **ENGINEERING MATHEMATICS – III**

Day and Date: Thursday, 3-5-2018

Max. Marks: 70

Time: 2.30 p.m. to 5.30 p.m.

Instructions: 1) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book Page No. 3. Each question carries one mark.

- 2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.
- 3) Figures to right indicate full marks.
- 4) Assume suitable data whenever necessary.

#### MCQ/Objective Type Questions

**Duration: 30 Minutes** Marks: 14

1. Choose the correct answer:

 $(14 \times 1 = 14)$ 

- 1) Fourier expansion of an even function in the range  $(-\pi, \pi)$  has
  - a) Only sine terms
  - b) Only cosine terms
  - c) Both sine and cosine terms
  - d) None
- 2) If  $f(x) = x^4$  in (-1, 1), then the Fourier coefficient  $b_n$  is equal to
  - a) 1

b) π

c) 0

- d) None
- 3) For the function  $f(x) = \begin{cases} -k, & -\pi < x < 0 \\ k, & 0 < x < \pi \end{cases}$  the value of  $a_0$  in Fourier expansion will be . . .
  - a) k

b) 2k

c) 0

- d) -k
- 4) In the mapping  $W = \frac{1}{z}$  the interior of the unit circle |z| = 1 is mapped onto
  - a) The interior of the unit circle
- b) The boundary of the unit circle

c) On the x-axis

- d) On the exterior of the unit circle
- 5) The value of integration,  $\int_{c} \frac{\sin z}{z} dz$ , C: |z| = 1 is
  - a) 0

- b)  $\pi i$  c)  $-\pi i$
- d) 2 πi

- 6) If  $f(z) = \overline{z}$ , then f'(z)
  - a) equal to 1

b) equal to 0

c) does not exist

- d) equal to -1
- 7) In the mapping w = 4z, the region x = 0, y = 0, x + y = 1 is transformed into
  - a) a square

b) a circle

c) a triangle

d) none of these

8) L{t e<sup>-t</sup>} is

a) 
$$\frac{1}{\left(s+1\right)^2}$$

a) 
$$\frac{1}{(s+1)^2}$$
 b)  $-\frac{1}{(s+1)^2}$  c)  $\frac{s}{(s+1)^2}$  d)  $-\frac{s}{(s+1)^2}$ 

c) 
$$\frac{s}{(s+1)^2}$$

- 9)  $L^{-1}\left\{\frac{s-4}{(s-4)^2+5^2}\right\}=$ 
  - a) e<sup>4t</sup> sin 5t

- b)  $e^{-4t} \sin 5t$  c)  $e^{4t} \cos 5t$  d)  $e^{-4t} \cos 5t$
- 10)  $L^{-1}\left\{\frac{1}{3s-1}\right\} =$ 
  - a) et

- b)  $\frac{e^{\frac{t}{3}}}{2}$  c)  $\frac{e^{t}}{3}$
- 11) If  $L\{f(t)\} = \Phi(s)$  then  $L\{f(at)\}$  is

  - a)  $\Phi\left(\frac{s}{a}\right)$  b)  $\frac{1}{s}\Phi\left(\frac{s}{a}\right)$  c)  $\frac{1}{a}\Phi\left(\frac{s}{a}\right)$  d)  $\Phi'\left(\frac{s}{a}\right)$
- 12) Cauchy-Riemann equations for f(z) to be analytic are
  - a)  $u_{x} = v_{x}$ ,  $u_{y} = -v_{y}$

b)  $u_x = v_y$ ,  $u_y = -v_x$ d)  $u_x = -v_y$ ,  $u_y = v_x$ 

c)  $u_{x} = -v_{x}$ ,  $u_{y} = v_{y}$ 

- 13) A function  $\Phi(x, y)$  having continuous partial derivatives of the first and second order is called harmonic function if
  - a)  $\nabla \Phi = 0$

b)  $\nabla \Phi \neq 0$ 

c)  $\nabla^2 \Phi = 0$ 

- d)  $\nabla^2 \Phi \neq 0$
- 14) The mapping w = f(z) is conformal if
  - a) f(z) is analytic and f'(z) = 0
  - b) f(z) is analytic and  $f'(z) \neq 0$
  - c) f(z) is not analytic and  $f'(z) \neq 0$
  - d) None of these



Seat No.

# S.E. (Bio-Medical Engineering) (Part – I) (New CBCS) Examination, 2018 ENGINEERING MATHEMATICS – III

Day and Date: Thursday, 3-5-2018 Marks: 56

Time: 2.30 p.m. to 5.30 p.m.

**Instructions**: 1) Figures to the **right** indicate **full** marks.

2) Assume suitable data whenever necessary.

SECTION - I

### 2. Attempt any four:

 $(4 \times 4 = 16)$ 

- 1) Find the Laplace transform of e4t sin3t.
- 2) Find the Laplace transform of  $f(t) = t^2$ , 0 < t < 2, where f(t) is a periodic function with period 2.
- 3) Find the  $L^{-1} \left\{ \frac{1}{2} log \left( \frac{s^2 + 2^2}{s^2 + 3^2} \right) \right\}$ .
- 4) Find k such that  $\frac{1}{2}log(x^2 + y^2) + itan^{-1}\frac{kx}{y}$  is analytic.
- 5) Find the Laplace transform of  $e^{-4t} \int_0^t u \sin 3u du$ .

# 3. Attempt any two:

 $(6 \times 2 = 12)$ 

- 1) Solve using Laplace transform  $\frac{d^2y}{dt^2} + 4\frac{dy}{dt} + 8y = 1$ , where y(0) = 0, y'(0) = 1.
- 2) Find the orthogonal trajectories of the family of the curve  $3x^2y y^3 = c$ .
- 3) Find  $L^{-1}\left\{\frac{s^2}{\left(s^2+1\right)\left(s^2+4\right)}\right\}$  by convolution theorem.

# 

#### SECTION - II

4. Attempt any four:

 $(4 \times 4 = 16)$ 

- 1) Find the image of the circle  $(x-3)^2 + y^2 = 2$  under the transformation  $w = \frac{1}{z}$ .
- 2) Obtain Fourier series of  $f(x) = \begin{cases} \pi x & 0 \le x \le 1 \\ \pi(2-x) & 1 \le x \le 2 \end{cases}$  with period 2.
- 3) Find half range fourier sine series of f(x) = x(2 x) in 0 < x < 2.
- 4) Evaluate  $\int_0^{1+i} (x^2 iy) dz$ , along (i) the line y = x (ii) the parabola  $y = x^2$ .
- 5) Evaluate  $\oint_C \frac{z^2+z+1}{z-1} dz$ , where C is contour (i) z=1, (ii)  $|z|=\frac{1}{2}$ .
- 5. Attempt any two:

 $(6 \times 2 = 12)$ 

- 1) Find the half range sine series for  $f(x) = \begin{cases} \frac{1}{2} + x, & -\frac{1}{2} < x < 0 \\ \frac{1}{2} x, & 0 < x < \frac{1}{2} \end{cases}$ .
- 2) Find the Fourier series for  $f(x) = \frac{\pi x}{2}$  in the interval  $(0, 2\pi)$ . Also prove that

$$\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots$$

3) Find the bilinear transformation which maps the points z = 0, -i, -1 onto the points w = i, 1, 0.

| Seat |  |
|------|--|
| No.  |  |

# S.E. (Bio-Medical Engineering) (Part – I) (New CBCS) Examination, 2018 **ENGINEERING MATHEMATICS – III**

Day and Date: Thursday, 3-5-2018 Max. Marks: 70

Time: 2.30 p.m. to 5.30 p.m.

Instructions: 1) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book Page No. 3. Each question carries one mark.

- 2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.
- 3) Figures to right indicate full marks.
- 4) Assume suitable data whenever necessary.

# MCQ/Objective Type Questions

**Duration: 30 Minutes** Marks: 14

1. Choose the correct answer:

 $(14 \times 1 = 14)$ 

1) Cauchy-Riemann equations for f(z) to be analytic are

a) 
$$u_x = v_x$$
,  $u_y = -v_y$ 

b) 
$$u_x = v_y$$
,  $u_y = -v_x$   
d)  $u_x = -v_y$ ,  $u_y = v_x$ 

c) 
$$u_x = -v_x$$
,  $u_y = v_y$ 

d) 
$$u_x = -v_y, u_y = v_x$$

2) A function  $\Phi(x, y)$  having continuous partial derivatives of the first and second order is called harmonic function if

a) 
$$\nabla \Phi = 0$$

b) 
$$\nabla \Phi \neq 0$$

c) 
$$\nabla^2 \Phi = 0$$

d) 
$$\nabla^2 \Phi \neq 0$$

3) The mapping w = f(z) is conformal if

- a) f(z) is analytic and f'(z) = 0
- b) f(z) is analytic and  $f'(z) \neq 0$
- c) f(z) is not analytic and  $f'(z) \neq 0$
- d) None of these

4) Fourier expansion of an even function in the range  $(-\pi, \pi)$  has

- a) Only sine terms
- b) Only cosine terms
- c) Both sine and cosine terms
- d) None

5) If  $f(x) = x^4$  in (-1, 1), then the Fourier coefficient  $b_a$  is equal to

a) 1

b) π

c) 0

d) None



- 6) For the function  $f(x) = \begin{cases} -k, & -\pi < x < 0 \\ k, & 0 < x < \pi \end{cases}$  the value of  $a_0$  in Fourier expansion will be . . .
  - a) k

b) 2k

c) 0

- d) -k
- 7) In the mapping  $W = \frac{1}{2}$  the interior of the unit circle |z| = 1 is mapped onto
  - a) The interior of the unit circle
- b) The boundary of the unit circle

c) On the x-axis

- d) On the exterior of the unit circle
- 8) The value of integration,  $\int_{c}^{c} \frac{\sin z}{z} dz$ , C: |z| = 1 is
  - a) 0

b) πi

c)  $-\pi i$ 

d)  $-2\pi i$ 

- 9) If  $f(z) = \overline{z}$ , then f'(z)
  - a) equal to 1

b) equal to 0

c) does not exist

- d) equal to -1
- 10) In the mapping w = 4z, the region x = 0, y = 0, x + y = 1 is transformed into
  - a) a square

b) a circle

c) a triangle

d) none of these

11) L{t e<sup>-t</sup>} is

a) 
$$\frac{1}{\left(s+1\right)^2}$$

a) 
$$\frac{1}{(s+1)^2}$$
 b)  $-\frac{1}{(s+1)^2}$  c)  $\frac{s}{(s+1)^2}$  d)  $-\frac{s}{(s+1)^2}$ 

c) 
$$\frac{s}{(s+1)^2}$$

d) 
$$-\frac{s}{(s+1)^2}$$

- 12)  $L^{-1}\left\{\frac{s-4}{(s-4)^2+5^2}\right\}=$ 
  - a)  $e^{4t} \sin 5t$

- b)  $e^{-4t} \sin 5t$  c)  $e^{4t} \cos 5t$  d)  $e^{-4t} \cos 5t$
- 13)  $L^{-1}\left\{\frac{1}{3s-1}\right\} =$ 
  - a) et

- b)  $\frac{e^{\frac{t}{3}}}{3}$  c)  $\frac{e^{t}}{3}$
- 14) If  $L\{f(t)\} = \Phi(s)$  then  $L\{f(at)\}$  is
- a)  $\Phi\left(\frac{s}{a}\right)$  b)  $\frac{1}{s}\Phi\left(\frac{s}{a}\right)$  c)  $\frac{1}{a}\Phi\left(\frac{s}{a}\right)$  d)  $\Phi'\left(\frac{s}{a}\right)$



Seat No.

# S.E. (Bio-Medical Engineering) (Part – I) (New CBCS) Examination, 2018 ENGINEERING MATHEMATICS – III

Day and Date: Thursday, 3-5-2018 Marks: 56

Time: 2.30 p.m. to 5.30 p.m.

**Instructions**: 1) Figures to the **right** indicate **full** marks.

2) Assume suitable data whenever necessary.

SECTION - I

#### 2. Attempt any four:

 $(4 \times 4 = 16)$ 

- 1) Find the Laplace transform of e<sup>4t</sup> sin<sup>3</sup>t.
- 2) Find the Laplace transform of  $f(t) = t^2$ , 0 < t < 2, where f(t) is a periodic function with period 2.
- 3) Find the  $L^{-1} \left\{ \frac{1}{2} log \left( \frac{s^2 + 2^2}{s^2 + 3^2} \right) \right\}$ .
- 4) Find k such that  $\frac{1}{2}log(x^2 + y^2) + itan^{-1}\frac{kx}{y}$  is analytic.
- 5) Find the Laplace transform of  $e^{-4t} \int_0^t u \sin 3u du$ .

# 3. Attempt any two:

(6×2=12)

- 1) Solve using Laplace transform  $\frac{d^2y}{dt^2} + 4\frac{dy}{dt} + 8y = 1$ , where y(0) = 0, y'(0) = 1.
- 2) Find the orthogonal trajectories of the family of the curve  $3x^2y y^3 = c$ .
- 3) Find  $L^{-1}\left\{\frac{s^2}{\left(s^2+1\right)\left(s^2+4\right)}\right\}$  by convolution theorem.

# 

#### SECTION - II

4. Attempt any four:

 $(4 \times 4 = 16)$ 

- 1) Find the image of the circle  $(x-3)^2 + y^2 = 2$  under the transformation  $w = \frac{1}{z}$ .
- 2) Obtain Fourier series of  $f(x) = \begin{cases} \pi x & 0 \le x \le 1 \\ \pi(2-x) & 1 \le x \le 2 \end{cases}$  with period 2.
- 3) Find half range fourier sine series of f(x) = x(2 x) in 0 < x < 2.
- 4) Evaluate  $\int_0^{1+i} (x^2 iy) dz$ , along (i) the line y = x (ii) the parabola  $y = x^2$ .
- 5) Evaluate  $\oint_C \frac{z^2+z+1}{z-1} dz$ , where C is contour (i) z=1, (ii)  $|z|=\frac{1}{2}$ .
- 5. Attempt any two:

 $(6 \times 2 = 12)$ 

- 1) Find the half range sine series for  $f(x) = \begin{cases} \frac{1}{2} + x, & -\frac{1}{2} < x < 0 \\ \frac{1}{2} x, & 0 < x < \frac{1}{2} \end{cases}$
- 2) Find the Fourier series for  $f(x) = \frac{\pi x}{2}$  in the interval  $(0, 2\pi)$ . Also prove that

$$\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots$$

3) Find the bilinear transformation which maps the points z = 0, -i, -1 onto the points w = i, 1, 0.

Seat No.

Set S

Max. Marks: 70

# S.E. (Bio-Medical Engineering) (Part – I) (New CBCS) Examination, 2018 ENGINEERING MATHEMATICS – III

Day and Date: Thursday, 3-5-2018

Time: 2.30 p.m. to 5.30 p.m.

1.

2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

in Answer Book Page No. 3. Each question carries one mark.

- 3) Figures to right indicate full marks.
- 4) Assume suitable data whenever necessary.

Instructions: 1) Q. No. 1 is compulsory. It should be solved in first 30 minutes

#### MCQ/Objective Type Questions

Duration : 30 Minutes Marks : 14

1. Choose the correct answer:

 $(14 \times 1 = 14)$ 

- 1) For the function  $f(x) = \begin{cases} -k, & -\pi < x < 0 \\ k, & 0 < x < \pi \end{cases}$  the value of  $a_0$  in Fourier expansion will be . . .
  - a) k

b) 2k

c) 0

- d) -k
- 2) In the mapping  $W = \frac{1}{z}$  the interior of the unit circle |z| = 1 is mapped onto
  - a) The interior of the unit circle

b) The boundary of the unit circle

c) On the x-axis

- d) On the exterior of the unit circle
- 3) The value of integration,  $\int_{c} \frac{\sin z}{z} dz$ , C: |z| = 1 is

a) 0

b) πi

c)  $-\pi i$ 

d)  $-2\pi i$ 

4) If  $f(z) = \overline{z}$ , then f'(z)

a) equal to 1

b) equal to 0

c) does not exist

- d) equal to -1
- 5) In the mapping w = 4z, the region x = 0, y = 0, x + y = 1 is transformed into
  - a) a square

b) a circle

c) a triangle

d) none of these

# **SLR-TC - 429**

-2-

6) L{t e<sup>-t</sup>} is

a) 
$$\frac{1}{(s+1)^2}$$

a) 
$$\frac{1}{(s+1)^2}$$
 b)  $-\frac{1}{(s+1)^2}$  c)  $\frac{s}{(s+1)^2}$  d)  $-\frac{s}{(s+1)^2}$ 

c) 
$$\frac{s}{(s+1)^2}$$

d) 
$$-\frac{s}{(s+1)^2}$$

- 7)  $L^{-1}\left\{\frac{s-4}{(s-4)^2+5^2}\right\}=$ 
  - a) e4t sin 5t

- b)  $e^{-4t} \sin 5t$  c)  $e^{4t} \cos 5t$  d)  $e^{-4t} \cos 5t$
- 8)  $L^{-1}\left\{\frac{1}{3s-1}\right\} =$ 
  - a) et

- b)  $\frac{e^{\frac{t}{3}}}{3}$  c)  $\frac{e^{t}}{3}$  d)  $\frac{e^{-\frac{t}{3}}}{3}$
- 9) If  $L\{f(t)\} = \Phi$  (s) then  $L\{f(at)\}$  is
- a)  $\Phi\left(\frac{s}{a}\right)$  b)  $\frac{1}{s}\Phi\left(\frac{s}{a}\right)$  c)  $\frac{1}{a}\Phi\left(\frac{s}{a}\right)$  d)  $\Phi'\left(\frac{s}{a}\right)$
- 10) Cauchy-Riemann equations for f(z) to be analytic are

a) 
$$u_x = v_x$$
,  $u_y = -v_y$ 

b) 
$$u_x = v_y, u_y = -v_x$$

c) 
$$u_x = -v_x, u_y = v_y$$

d) 
$$u_{x} = -v_{y}, u_{y} = v_{x}$$

11) A function  $\Phi(x, y)$  having continuous partial derivatives of the first and second order is called harmonic function if

a) 
$$\nabla \Phi = 0$$

b) 
$$\nabla \Phi \neq 0$$

c) 
$$\nabla^2 \Phi = 0$$

d) 
$$\nabla^2 \Phi \neq 0$$

- 12) The mapping w = f(z) is conformal if
  - a) f(z) is analytic and f'(z) = 0
  - b) f(z) is analytic and  $f'(z) \neq 0$
  - c) f(z) is not analytic and  $f'(z) \neq 0$
  - d) None of these
- 13) Fourier expansion of an even function in the range  $(-\pi, \pi)$  has
  - a) Only sine terms
  - b) Only cosine terms
  - c) Both sine and cosine terms
  - d) None
- 14) If  $f(x) = x^4$  in (-1, 1), then the Fourier coefficient  $b_n$  is equal to

b) π

c) 0

d) None



Seat No.

# S.E. (Bio-Medical Engineering) (Part – I) (New CBCS) Examination, 2018 ENGINEERING MATHEMATICS – III

Day and Date: Thursday, 3-5-2018 Marks: 56

Time: 2.30 p.m. to 5.30 p.m.

**Instructions**: 1) Figures to the **right** indicate **full** marks.

2) Assume suitable data whenever necessary.

SECTION - I

### 2. Attempt any four:

 $(4 \times 4 = 16)$ 

- 1) Find the Laplace transform of e4t sin3t.
- 2) Find the Laplace transform of  $f(t) = t^2$ , 0 < t < 2, where f(t) is a periodic function with period 2.
- 3) Find the  $L^{-1} \left\{ \frac{1}{2} log \left( \frac{s^2 + 2^2}{s^2 + 3^2} \right) \right\}$ .
- 4) Find k such that  $\frac{1}{2}log(x^2 + y^2) + itan^{-1}\frac{kx}{y}$  is analytic.
- 5) Find the Laplace transform of  $e^{-4t} \int_0^t u \sin 3u du$ .

# 3. Attempt any two:

 $(6 \times 2 = 12)$ 

- 1) Solve using Laplace transform  $\frac{d^2y}{dt^2} + 4\frac{dy}{dt} + 8y = 1$ , where y(0) = 0, y'(0) = 1.
- 2) Find the orthogonal trajectories of the family of the curve  $3x^2y y^3 = c$ .
- 3) Find  $L^{-1}\left\{\frac{s^2}{\left(s^2+1\right)\left(s^2+4\right)}\right\}$  by convolution theorem.

# 

#### SECTION - II

4. Attempt any four:

 $(4 \times 4 = 16)$ 

- 1) Find the image of the circle  $(x-3)^2 + y^2 = 2$  under the transformation  $w = \frac{1}{z}$ .
- 2) Obtain Fourier series of  $f(x) = \begin{cases} \pi x & 0 \le x \le 1 \\ \pi(2-x) & 1 \le x \le 2 \end{cases}$  with period 2.
- 3) Find half range fourier sine series of f(x) = x(2 x) in 0 < x < 2.
- 4) Evaluate  $\int_0^{1+i} (x^2 iy) dz$ , along (i) the line y = x (ii) the parabola  $y = x^2$ .
- 5) Evaluate  $\oint_C \frac{z^2+z+1}{z-1} dz$ , where C is contour (i) z=1, (ii)  $|z|=\frac{1}{2}$ .
- 5. Attempt any two:

 $(6 \times 2 = 12)$ 

- 1) Find the half range sine series for  $f(x) = \begin{cases} \frac{1}{2} + x, & -\frac{1}{2} < x < 0 \\ \frac{1}{2} x, & 0 < x < \frac{1}{2} \end{cases}.$
- 2) Find the Fourier series for  $f(x) = \frac{\pi x}{2}$  in the interval  $(0, 2\pi)$ . Also prove that

$$\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots$$

3) Find the bilinear transformation which maps the points z = 0, -i, -1 onto the points w = i, 1, 0.



| Seat<br>No. | Set | Р |
|-------------|-----|---|
| NO.         |     |   |

# S.E. (Biomedical) (Part – I) (New CBCS) Examination, 2018 HUMAN ANATOMY AND PHYSIOLOGY

Day and Date: Friday, 4-5-2018 Max. Marks: 70

Time: 2.30 p.m. to 5.30 p.m.

Instructions: 1) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book Page No. 3. Each question carries one mark.

2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

# MCQ/Objective Type Questions

| Dur | atio | n : 30 Minutes  |                                |                       | Marks: 14            |
|-----|------|-----------------|--------------------------------|-----------------------|----------------------|
| 1.  | Ch   | oose the correc | t answer :                     |                       | (1×14=14)            |
|     | 1)   |                 | allows air to pas              | s into the lungs.     |                      |
|     |      |                 |                                | c) Pancreas           | d) Larynx            |
|     | 2)   | Thoracic and a  | bdominal cavities a            | re separated by the   |                      |
|     |      | a) pleura       |                                | b) diaphragm          |                      |
|     |      | c) lumbar       |                                | d) spleen             |                      |
|     | 3)   |                 | $_{\_}$ is the structural, fib | rous protein found in | n the dermis.        |
|     |      | a) Collagen     | b) Heparin                     | c) Sebum              | d) Melanin           |
|     | 4)   |                 | is the flexible co             | nnective tissues that | is attached to bones |
|     |      | at the joints.  |                                |                       |                      |
|     |      | a) Adipose      | b) Cartilage                   | c) Muscle             | d) Nerve             |
|     | 5)   |                 |                                | ch an impulse is tran | smitted from one     |
|     |      | neuron to anot  | her neuron.                    |                       |                      |
|     |      | a) Synapse      |                                | b) Terminal plate     |                      |
|     |      | c) Dendrite     |                                | d) Nerve center       |                      |
|     | 6)   |                 | is the body cavity t           | hat contains the pitu | itary gland.         |
|     |      | a) Abdominal    |                                | b) Cranial            |                      |
|     |      | c) Spinal       |                                | d) Thoracic           |                      |

| 7)  | controls body tempe                              | rature, sleep and appetite.                  |
|-----|--------------------------------------------------|----------------------------------------------|
|     | a) Adrenal gland                                 | b) Hypothalamus                              |
|     | c) Pancreas                                      | d) Thalamus                                  |
| 8)  | Saliva contains an enzyme that act nutrients.    | ts upon of the following                     |
|     | a) starches                                      | b) proteins                                  |
|     | c) fats                                          | d) minerals                                  |
| 9)  | is the master glan                               | d of endocrine system.                       |
|     | a) Adrenal                                       | b) Pancreas                                  |
|     | c) Thyroid                                       | d) Pituitary                                 |
| 10) | Sinu atrial node is located at                   |                                              |
|     | a) Right atrium                                  | b) Right ventricle                           |
|     | c) Left atrium                                   | d) Left ventricle                            |
| 11) | The circulatory system that supplies ( is called | $O_2$ and nutrients to the cells of the body |
|     | a) diffusion                                     | b) systemic circulation                      |
|     | c) coagulation                                   | d) pulmonary circulation                     |
| 12) | The right lung consists oflobes.                 | _ lobes and left lung has                    |
|     | a) 3, 2 b) 2, 3                                  | c) 2, 2 d) 3, 1                              |
| 13) | Afferent peripheral nerves that bring            | s information into CNS are called            |
|     | a) Motor nerves                                  | b) Sensory nerves                            |
|     | c) Gray matter                                   | d) White matter                              |
| 14) | The formed elements of the blood at              | re made up of all the following except       |
|     | a) RBC's                                         | b) WBC's                                     |
|     | c) Plasma                                        | d) Platelets                                 |
|     |                                                  |                                              |



| Seat |  |
|------|--|
| No.  |  |

# S.E. (Biomedical) (Part – I) (New CBCS) Examination, 2018 HUMAN ANATOMY AND PHYSIOLOGY

Day and Date: Friday, 4-5-2018 Marks: 56

Time: 2.30 p.m. to 5.30 p.m.

#### SECTION - I

#### 2. Attempt any four:

 $(4 \times 4 = 16)$ 

- 1) Define inhalation and expiration process in detail.
- 2) Draw microscopic structure of human cell and define any 4 components of it
- 3) Explain the structure and any four function of skin.
- 4) Define Einthoveris triangle and mention the significance of ECG waveforms.
- 5) Draw respiratory system and mention each organ of it.

### 3. Attempt any two:

 $(6 \times 2 = 12)$ 

- 1) Explain conduction system of heart with neat figure.
- 2) Write a short note on:
  - a) Liver structure and functions
  - b) Small intestine structure and functions
- 3) Write a short note on:
  - a) Blood groups
  - b) Blood composition

#### SECTION - II

### 4. Attempt any 4:

 $(4 \times 4 = 16)$ 

- 1) List any two each type of glands for endocrine and exocrine glands and mention their each of 2 functions.
- 2) Draw structure of cochlea with correct namings.



- 3) Define sympathetic and para sympathetic nervous system and explain their significance and functions.
- 4) Explain the process of image formation on the retina with necessary diagram.
- 5) List various endocrine glands and explain any two with their functions.

5. Attempt any 2:

 $(6 \times 2 = 12)$ 

- 1) Write a short note on:
  - a) Oestrogens and progesterone.
  - b) Reflex action and reflex arcs.
- 2) Explain the process of urine formation with necessary diagram.
- 3) Explain process of hearing mechanism with necessary diagram.



| Seat<br>No. |   | Set | Q |
|-------------|---|-----|---|
|             | • | 1   |   |

| •                                                   | dicai) (Part – I) (Ne<br>JMAN ANATOMY <i>I</i> | •                                               | -                                                                                                             |
|-----------------------------------------------------|------------------------------------------------|-------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| Day and Date : Friday,<br>Time : 2.30 p.m. to 5.30  |                                                |                                                 | Max. Marks: 70                                                                                                |
| ,                                                   | -                                              | ge No. <b>3. Each</b> quective type quest       |                                                                                                               |
|                                                     | MCQ/Objective T                                | ype Questions                                   |                                                                                                               |
| Duration: 30 Minutes                                |                                                |                                                 | Marks: 14                                                                                                     |
| 1. Choose the correct                               | answer:                                        |                                                 | (1×14=14)                                                                                                     |
| <ol> <li>Saliva contains<br/>nutrients.</li> </ol>  | an enzyme that ac                              | ts upon                                         | of the following                                                                                              |
| a) starches                                         |                                                | b) proteins                                     |                                                                                                               |
| c) fats                                             |                                                | d) minerals                                     |                                                                                                               |
| 2)                                                  | is the master glan                             | d of endocrine syst                             | em.                                                                                                           |
| a) Adrenal                                          |                                                | b) Pancreas                                     |                                                                                                               |
| c) Thyroid                                          |                                                | d) Pituitary                                    |                                                                                                               |
| 3) Sinu atrial node                                 | is located at                                  |                                                 |                                                                                                               |
| a) Right atrium                                     |                                                | b) Right ventricle                              |                                                                                                               |
| c) Left atrium                                      |                                                | d) Left ventricle                               |                                                                                                               |
| <ol> <li>The circulatory s<br/>is called</li> </ol> | system that supplies (                         | $O_{\!\scriptscriptstyle 2}$ and nutrients to t | he cells of the body                                                                                          |
| a) diffusion                                        |                                                | b) systemic circul                              | ation                                                                                                         |
| -\                                                  |                                                | al\ .al.aa a.aa a.a. a!a                        | مراجع المراجع |

- c) coagulation
- d) pulmonary circulation
- 5) The right lung consists of \_\_\_\_\_ lobes and left lung has \_\_\_\_\_ lobes.
  - a) 3, 2 b) 2, 3 c) 2, 2 d) 3, 1

| 6)         |                                                                                           | neral nerves that bring                                                                    |                                                                                                      |                                                   |
|------------|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|---------------------------------------------------|
|            | a) Motor nerve                                                                            | es                                                                                         | b) Sensory ner                                                                                       | ves                                               |
|            | c) Gray matte                                                                             | r                                                                                          | d) White matter                                                                                      | r                                                 |
| 7)         | The formed ele                                                                            | ements of the blood a                                                                      | re made up of all                                                                                    | the following except                              |
|            | a) RBC's                                                                                  |                                                                                            | b) WBC's                                                                                             |                                                   |
|            | c) Plasma                                                                                 |                                                                                            | d) Platelets                                                                                         |                                                   |
| 8)         |                                                                                           | allows air to pass                                                                         | into the lungs.                                                                                      |                                                   |
| ,          |                                                                                           | b) Aorta                                                                                   |                                                                                                      | d) Larynx                                         |
| 9)         | Thoracic and a                                                                            | abdominal cavities are                                                                     | separated by th                                                                                      | e                                                 |
| ,          | a) pleura                                                                                 |                                                                                            | b) diaphragm                                                                                         |                                                   |
|            | c) lumbar                                                                                 |                                                                                            | d) spleen                                                                                            |                                                   |
| 10)        | ,                                                                                         | _ is the structural, fibro                                                                 | , .                                                                                                  | l in the dermis                                   |
| 10)        |                                                                                           |                                                                                            | -                                                                                                    |                                                   |
|            |                                                                                           | b) Heparin                                                                                 |                                                                                                      |                                                   |
| 11)        |                                                                                           | ia tha flavibla agar                                                                       |                                                                                                      | - 4 ! 44 1 1 4 - 1                                |
| · · /      |                                                                                           |                                                                                            | nective tissues tha                                                                                  | at is attached to bones                           |
| ,          | at the joints.                                                                            |                                                                                            |                                                                                                      |                                                   |
| ,          | at the joints. a) Adipose                                                                 | b) Cartilage                                                                               | c) Muscle                                                                                            | d) Nerve                                          |
| 12)        | at the joints. a) Adipose                                                                 |                                                                                            | c) Muscle                                                                                            | d) Nerve                                          |
|            | at the joints. a) Adipose                                                                 | b) Cartilage<br>is a point at which                                                        | c) Muscle                                                                                            | d) Nerve                                          |
|            | at the joints. a) Adipose                                                                 | b) Cartilage<br>is a point at which                                                        | c) Muscle                                                                                            | d) Nerve<br>ansmitted from one                    |
|            | at the joints.  a) Adipose  neuron to anot                                                | b) Cartilage<br>is a point at which                                                        | c) Muscle<br>an impulse is tra                                                                       | d) Nerve<br>ansmitted from one<br>ite             |
|            | at the joints.  a) Adipose  neuron to anot a) Synapse c) Dendrite                         | b) Cartilage<br>is a point at which                                                        | c) Muscle an impulse is tra b) Terminal pla d) Nerve cente                                           | d) Nerve<br>ansmitted from one<br>ite<br>r        |
| 12)        | at the joints.  a) Adipose  neuron to anot a) Synapse c) Dendrite                         | b) Cartilage<br>is a point at which<br>ther neuron.                                        | c) Muscle an impulse is tra b) Terminal pla d) Nerve cente                                           | d) Nerve<br>ansmitted from one<br>ite<br>r        |
| 12)        | at the joints.  a) Adipose  neuron to anot a) Synapse c) Dendrite                         | b) Cartilage<br>is a point at which<br>ther neuron.                                        | c) Muscle an impulse is tra b) Terminal pla d) Nerve cente at contains the pi                        | d) Nerve<br>ansmitted from one<br>ite<br>r        |
| 12)<br>13) | at the joints.  a) Adipose  neuron to anot a) Synapse c) Dendrite  a) Abdominal c) Spinal | b) Cartilage is a point at which ther neuron is the body cavity the                        | c) Muscle an impulse is tra b) Terminal pla d) Nerve cente at contains the pi b) Cranial d) Thoracic | d) Nerve ansmitted from one ate r ituitary gland. |
| 12)        | at the joints.  a) Adipose  neuron to anot a) Synapse c) Dendrite  a) Abdominal c) Spinal | b) Cartilage is a point at which ther neuron is the body cavity that _ controls body tempe | c) Muscle an impulse is tra b) Terminal pla d) Nerve cente at contains the pi b) Cranial d) Thoracic | d) Nerve ansmitted from one ate r ituitary gland. |
| 12)<br>13) | at the joints.  a) Adipose  neuron to anot a) Synapse c) Dendrite  a) Abdominal c) Spinal | b) Cartilage is a point at which ther neuron is the body cavity that _ controls body tempe | c) Muscle an impulse is tra b) Terminal pla d) Nerve cente at contains the pi b) Cranial d) Thoracic | d) Nerve ansmitted from one ate r ituitary gland. |

Set Q



| Seat |  |
|------|--|
| No.  |  |

# S.E. (Biomedical) (Part – I) (New CBCS) Examination, 2018 HUMAN ANATOMY AND PHYSIOLOGY

Day and Date: Friday, 4-5-2018 Marks: 56

Time: 2.30 p.m. to 5.30 p.m.

#### SECTION - I

#### 2. Attempt any four:

 $(4 \times 4 = 16)$ 

- 1) Define inhalation and expiration process in detail.
- 2) Draw microscopic structure of human cell and define any 4 components of it
- 3) Explain the structure and any four function of skin.
- 4) Define Einthoveris triangle and mention the significance of ECG waveforms.
- 5) Draw respiratory system and mention each organ of it.

### 3. Attempt any two:

 $(6 \times 2 = 12)$ 

- 1) Explain conduction system of heart with neat figure.
- 2) Write a short note on:
  - a) Liver structure and functions
  - b) Small intestine structure and functions
- 3) Write a short note on:
  - a) Blood groups
  - b) Blood composition

#### SECTION - II

### 4. Attempt any 4:

 $(4 \times 4 = 16)$ 

- 1) List any two each type of glands for endocrine and exocrine glands and mention their each of 2 functions.
- 2) Draw structure of cochlea with correct namings.



- 3) Define sympathetic and para sympathetic nervous system and explain their significance and functions.
- 4) Explain the process of image formation on the retina with necessary diagram.
- 5) List various endocrine glands and explain any two with their functions.

5. Attempt any 2:

 $(6 \times 2 = 12)$ 

- 1) Write a short note on:
  - a) Oestrogens and progesterone.
  - b) Reflex action and reflex arcs.
- 2) Explain the process of urine formation with necessary diagram.
- 3) Explain process of hearing mechanism with necessary diagram.



|      | Y . | ,   |     |
|------|-----|-----|-----|
| Seat |     | Set | R   |
| No.  |     |     | - 1 |

# S.E. (Biomedical) (Part – I) (New CBCS) Examination, 2018 HUMAN ANATOMY AND PHYSIOLOGY

Day and Date: Friday, 4-5-2018 Max. Marks: 70

Time: 2.30 p.m. to 5.30 p.m.

- Instructions: 1) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book Page No. 3. Each question carries one mark.
  - 2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

# MCQ/Objective Type Questions

| Dura | tior | n: 30 Minutes              |                                                                | Marks: 14 |  |  |  |  |
|------|------|----------------------------|----------------------------------------------------------------|-----------|--|--|--|--|
| 1. ( | Cho  | Choose the correct answer: |                                                                |           |  |  |  |  |
| 1)   |      | neuron to anot             | is a point at which an impulse is transmitted from her neuron. | one       |  |  |  |  |
|      |      | a) Synapse                 | b) Terminal plate                                              |           |  |  |  |  |
|      |      | c) Dendrite                | d) Nerve center                                                |           |  |  |  |  |
|      | 2)   |                            | is the body cavity that contains the pituitary gland.          |           |  |  |  |  |
|      |      | a) Abdominal               | b) Cranial                                                     |           |  |  |  |  |
|      |      | c) Spinal                  | d) Thoracic                                                    |           |  |  |  |  |
|      | 3)   |                            | controls body temperature, sleep and appetite.                 |           |  |  |  |  |
|      |      | a) Adrenal gla             |                                                                |           |  |  |  |  |
|      |      | c) Pancreas                | d) Thalamus                                                    |           |  |  |  |  |
|      |      | Saliva contains nutrients. | s an enzyme that acts upon of the fol                          | lowing    |  |  |  |  |
|      |      | a) starches                | b) proteins                                                    |           |  |  |  |  |
|      |      | c) fats                    | d) minerals                                                    |           |  |  |  |  |
|      | 5)   |                            | is the master gland of endocrine system.                       |           |  |  |  |  |
|      |      | a) Adrenal                 | b) Pancreas                                                    |           |  |  |  |  |
|      |      | c) Thyroid                 | d) Pituitary                                                   |           |  |  |  |  |

| 6)  | Sinu atrial node is locate          | d at                         |                     |                      |
|-----|-------------------------------------|------------------------------|---------------------|----------------------|
|     | a) Right atrium                     | b)                           | Right ventricle     |                      |
|     | c) Left atrium                      | d)                           | Left ventricle      |                      |
| 7)  | The circulatory system th is called | at supplies O <sub>2</sub> a | and nutrients to th | ne cells of the body |
|     | a) diffusion                        | b)                           | systemic circula    | ation                |
|     | c) coagulation                      | d)                           | pulmonary circu     | ulation              |
| 8)  | The right lung consists lobes.      | of lo                        | bes and left lun    | g has                |
|     | a) 3, 2 b) 2,                       | 3 c)                         | 2, 2                | d) 3, 1              |
| 9)  | Afferent peripheral nerve           | es that brings in            | formation into C    | NS are called        |
|     | a) Motor nerves                     | b)                           | Sensory nerves      | 3                    |
|     | c) Gray matter                      | d)                           | White matter        |                      |
| 10) | The formed elements of              | the blood are n              | nade up of all the  | e following except   |
|     | a) RBC's                            | b)                           | WBC's               |                      |
|     | c) Plasma                           | d)                           | Platelets           |                      |
| 11) | allows                              | air to pass into             | the lungs.          |                      |
|     | a) Trachea b) Ad                    |                              |                     | d) Larynx            |
| 12) | Thoracic and abdominal              | cavities are se              | parated by the      |                      |
|     | a) pleura                           | b)                           | diaphragm           |                      |
|     | c) lumbar                           | d)                           | spleen              |                      |
| 13) | is the str                          | uctural, fibrous             | protein found in    | the dermis.          |
|     | a) Collagen b) He                   | eparin c)                    | Sebum               | d) Melanin           |
| 14) | is the                              | flexible connect             | ive tissues that is | attached to bones    |
| ,   | at the joints.                      |                              |                     |                      |
|     | a) Adipose b) Ca                    | artilage c)                  | Muscle              | d) Nerve             |
|     |                                     |                              |                     |                      |

Set R



| Seat |  |
|------|--|
| No.  |  |

# S.E. (Biomedical) (Part – I) (New CBCS) Examination, 2018 HUMAN ANATOMY AND PHYSIOLOGY

Day and Date: Friday, 4-5-2018 Marks: 56

Time: 2.30 p.m. to 5.30 p.m.

#### SECTION - I

#### 2. Attempt any four:

 $(4 \times 4 = 16)$ 

- 1) Define inhalation and expiration process in detail.
- 2) Draw microscopic structure of human cell and define any 4 components of it
- 3) Explain the structure and any four function of skin.
- 4) Define Einthoveris triangle and mention the significance of ECG waveforms.
- 5) Draw respiratory system and mention each organ of it.

### 3. Attempt any two:

 $(6 \times 2 = 12)$ 

- 1) Explain conduction system of heart with neat figure.
- 2) Write a short note on:
  - a) Liver structure and functions
  - b) Small intestine structure and functions
- 3) Write a short note on:
  - a) Blood groups
  - b) Blood composition

#### SECTION - II

### 4. Attempt any 4:

 $(4 \times 4 = 16)$ 

- 1) List any two each type of glands for endocrine and exocrine glands and mention their each of 2 functions.
- 2) Draw structure of cochlea with correct namings.



- 3) Define sympathetic and para sympathetic nervous system and explain their significance and functions.
- 4) Explain the process of image formation on the retina with necessary diagram.
- 5) List various endocrine glands and explain any two with their functions.

5. Attempt any 2:

 $(6 \times 2 = 12)$ 

- 1) Write a short note on:
  - a) Oestrogens and progesterone.
  - b) Reflex action and reflex arcs.
- 2) Explain the process of urine formation with necessary diagram.
- 3) Explain process of hearing mechanism with necessary diagram.



| Seat | Set | S |
|------|-----|---|
| No.  |     |   |

|         | •                                            | , ,                                                 | w CBCS) Examinated AND PHYSIOLOG               |                     |
|---------|----------------------------------------------|-----------------------------------------------------|------------------------------------------------|---------------------|
| -       | nd Date : Friday, 4-5<br>2.30 p.m. to 5.30 p |                                                     |                                                | Max. Marks: 70      |
|         | ii<br>n<br>2) <b>A</b>                       | n Answer Book Pa<br>nark.<br><b>Answer MCQ/Obje</b> |                                                |                     |
|         |                                              | MCQ/Objective T                                     | ype Questions                                  |                     |
| Duratio | on: 30 Minutes                               |                                                     |                                                | Marks: 14           |
| 1. Ch   | oose the correct ar                          | nswer:                                              |                                                | (1×14=14)           |
| 1)      | Sinu atrial node is                          | located at                                          |                                                |                     |
|         | a) Right atrium                              |                                                     | b) Right ventricle                             |                     |
|         | c) Left atrium                               |                                                     | d) Left ventricle                              |                     |
| 2)      | The circulatory sys is called                | stem that supplies (                                | $O_{\scriptscriptstyle 2}$ and nutrients to th | e cells of the body |
|         | a) diffusion                                 |                                                     | b) systemic circula                            | tion                |
|         | c) coagulation                               |                                                     | d) pulmonary circu                             | lation              |
| 3)      | The right lung collobes.                     | nsists of                                           | _ lobes and left lung                          | g has               |
|         | a) 3, 2                                      | b) 2, 3                                             | c) 2, 2                                        | d) 3, 1             |
| 4)      | Afferent periphera                           | l nerves that bring                                 | s information into Cl                          | NS are called       |
|         | a) Motor nerves                              |                                                     | b) Sensory nerves                              |                     |
|         | c) Gray matter                               |                                                     | d) White matter                                |                     |
| 5)      | The formed eleme                             | ents of the blood ar                                | re made up of all the                          | following except    |
|         | a) RBC's                                     |                                                     | b) WBC's                                       |                     |
|         | c) Plasma                                    |                                                     | d) Platelets                                   |                     |



| Seat |  |
|------|--|
| No.  |  |

# S.E. (Biomedical) (Part – I) (New CBCS) Examination, 2018 HUMAN ANATOMY AND PHYSIOLOGY

Day and Date: Friday, 4-5-2018 Marks: 56

Time: 2.30 p.m. to 5.30 p.m.

#### SECTION - I

#### 2. Attempt any four:

 $(4 \times 4 = 16)$ 

- 1) Define inhalation and expiration process in detail.
- 2) Draw microscopic structure of human cell and define any 4 components of it
- 3) Explain the structure and any four function of skin.
- 4) Define Einthoveris triangle and mention the significance of ECG waveforms.
- 5) Draw respiratory system and mention each organ of it.

### 3. Attempt any two:

 $(6 \times 2 = 12)$ 

- 1) Explain conduction system of heart with neat figure.
- 2) Write a short note on:
  - a) Liver structure and functions
  - b) Small intestine structure and functions
- 3) Write a short note on:
  - a) Blood groups
  - b) Blood composition

#### SECTION - II

### 4. Attempt any 4:

 $(4 \times 4 = 16)$ 

- 1) List any two each type of glands for endocrine and exocrine glands and mention their each of 2 functions.
- 2) Draw structure of cochlea with correct namings.



- 3) Define sympathetic and para sympathetic nervous system and explain their significance and functions.
- 4) Explain the process of image formation on the retina with necessary diagram.
- 5) List various endocrine glands and explain any two with their functions.

5. Attempt any 2:

 $(6 \times 2 = 12)$ 

- 1) Write a short note on:
  - a) Oestrogens and progesterone.
  - b) Reflex action and reflex arcs.
- 2) Explain the process of urine formation with necessary diagram.
- 3) Explain process of hearing mechanism with necessary diagram.

| <br> | <br> | <br> | <br> | <br>• |
|------|------|------|------|-------|

# **SLR-TC - 431**

| Seat |  |
|------|--|
| No.  |  |

Set P

# S.E. (Biomedical Engg.) (Part – I) (New CBCS) Examination, 2018 BIOMATERIALS

Day and Date: Saturday, 5-5-2018 Total Marks: 70

Time: 2.30 p.m. to 5.30 p.m.

- Instructions: 1) Q. No. 1 is compulsory. It should be solved in first
  30 minutes in Answer Book Page No. 3. Each question
  carries one mark.
  - 2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.
  - 3) Figures to the **right** indicate **full** marks.
  - 4) Assume suitable data wherever required.

|     |      |                         | MCQ/Objectiv                               | e Type Questio    | าร                       |
|-----|------|-------------------------|--------------------------------------------|-------------------|--------------------------|
| Dur | atio | n : 30 Minutes          |                                            |                   | Marks : 14               |
| 1.  | Ch   | noose the correc        | t answer :                                 |                   | (14×1=14)                |
|     | 1)   | Biosensors are          | used in                                    |                   |                          |
|     |      | a) medical field        |                                            | b) agricultui     | ral field                |
|     |      | c) pollution mo         | nitoring                                   | d) all of the     | above                    |
|     | 2)   | Restorative bior of the | naterials are desig                        | ned to recover th | e shape and the function |
|     |      | a) teeth                | b) bone                                    | c) tissue         | d) none of above         |
|     | 3)   | are pattern to the sp   |                                            | (3D) networks of  | atoms having no regular  |
|     |      | a) Glasses              | b) Fiber                                   | c) Metal          | d) Polymer               |
|     | 4)   | Polycrystalline of      | ceramics have no                           | compo             | nents.                   |
|     |      | a) glassy               | b) liquid                                  | c) solid          | d) crystal               |
|     | 5)   |                         | the ability of a ma<br>pecific application |                   | with an appropriate host |
|     |      | a) Reduction            |                                            | b) Biocomp        | atibility                |
|     |      | c) Oxidation            |                                            | d) None of a      | above                    |



| 6)   | Elastic deformation in polymers is due to                        |                   |      |                  |                     |  |
|------|------------------------------------------------------------------|-------------------|------|------------------|---------------------|--|
|      | a) Slight adjust of molecular chains                             |                   |      |                  |                     |  |
|      | b) Slippage of molecular chains                                  |                   |      |                  |                     |  |
|      | c) Straightening of m                                            | olecular chains   |      |                  |                     |  |
|      | d) Severe of covalent                                            | t bonds           |      |                  |                     |  |
| 7)   | One of characteristic                                            | properties of po  | lym  | ner material     |                     |  |
|      | a) High temperature                                              | stability         | b)   | High mechani     | ical strength       |  |
|      | c) High elongation                                               |                   | d)   | Low hardness     | 3                   |  |
| 8)   | Polymers are                                                     | in nature.        |      |                  |                     |  |
|      | a) organic b                                                     | ) inorganic       | c)   | both a and b     | d) none             |  |
| 9)   | polymers ca                                                      | nnot be recycle   | d.   |                  |                     |  |
|      | a) Thermoplasts b                                                | ) Thermosets      | c)   | Elastomers       | d) All polymers     |  |
| 10)  | types of bio                                                     | materials are us  | ed   | as bridges betv  | veen human tissues  |  |
|      | and metals.                                                      |                   |      |                  |                     |  |
|      | a) Polymeric b                                                   | ) Ceramic         | c)   | Metallic         | d) All of these     |  |
| 11)  | Which of the following                                           | g statements is t | rue  | ?                |                     |  |
|      | a) Ceramic materials                                             | have low melting  | ng p | point            |                     |  |
|      | b) Porcelain is used a                                           | as insulating ma  | ter  | ial in spark plu | gs                  |  |
|      | c) Graphite is viscoel                                           | astic in nature   |      |                  |                     |  |
|      | d) Compacting iron of                                            | xide powder cei   | ram  | nic tools are pr | epared              |  |
| 12)  | materials                                                        | can be used to    | ma   | nufacture elas   | tomers.             |  |
|      | a) Limestone b                                                   | ) Petroleum       | c)   | Alcohol          | d) All of the above |  |
| 13)  | Malleability means                                               |                   |      |                  |                     |  |
|      | a) Metals undergo plastic deformation under compressive stresses |                   |      |                  |                     |  |
|      | b) Metals can be drav                                            | wn into wires     |      |                  |                     |  |
|      | c) Both a and b                                                  |                   |      |                  |                     |  |
| 4.4\ | d) None of the above                                             |                   |      |                  |                     |  |
| 14)  | Ductility means  a) Metals can be drav                           | wn into cheete    |      |                  |                     |  |
|      | b) Metals undergo ela                                            |                   | n II | nder tensile lo  | ads                 |  |
|      | c) Metals undergo pla                                            |                   |      |                  |                     |  |
|      | d) All of the above                                              |                   |      |                  |                     |  |
|      |                                                                  |                   |      |                  |                     |  |



| Seat |  |
|------|--|
| No.  |  |

# S.E. (Biomedical Engg.) (Part – I) (New CBCS) Examination, 2018 BIOMATERIALS

Day and Date: Saturday, 5-5-2018 Marks: 56

Time: 2.30 p.m. to 5.30 p.m.

**Instructions**: 1) Figures to the **right** indicate **full** marks.

2) Assume suitable data wherever required.

#### SECTION - I

### 2. Attempt any four:

 $(4 \times 4 = 16)$ 

- 1) Classify biomaterial in detail.
- 2) Explain applications of stainless steel.
- 3) Explain applications of PTFE.
- 4) Explain classification of bioceramics and mention its any 2 applications.
- 5) What are bioglasses? Mention its any 2 applications.

# 3. Attempt any 2:

 $(6 \times 2 = 12)$ 

- 1) Explain biocompatibility test performed on Cobalt based alloy.
- 2) Explain various applications of composite biomaterials.
- 3) Write a short note on (structure, applications):
  - a) Silicon rubber
  - b) Carbon implants

#### SECTION - II

# 4. Attempt any four:

 $(4 \times 4 = 16)$ 

- 1) Explain which material is suited as bone cement? Mention its specifications.
- 2) Explain materials can be protected from corrosion.
- 3) Which materials are used for soft tissue replacement? Discuss their properties.



- 4) Define thermoplastic and thermosetting resins. Mention its any two applications.
- 5) Discuss the properties and types of materials used in breast implants.

5. Attempt any 2:

 $(6 \times 2 = 12)$ 

- 1) Explain how surface properties of biomaterials are tested.
- 2) Write a short note on (structure and applications):
  - a) Wood and leathers
  - b) Alumina and zirconia.
- 3) Explain any 2 methods of biological testing of biomaterials in short.

Set P

| <br> | <br> |  |
|------|------|--|

| Seat |     |   |
|------|-----|---|
| No.  | Set | Q |

# S.E. (Biomedical Engg.) (Part – I) (New CBCS) Examination, 2018 BIOMATERIALS

Day and Date: Saturday, 5-5-2018 Total Marks: 70

Time: 2.30 p.m. to 5.30 p.m.

- Instructions: 1) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book Page No. 3. Each question carries one mark.
  - 2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.
  - 3) Figures to the **right** indicate **full** marks.
  - 4) Assume suitable data wherever required.

## MCQ/Objective Type Questions

| Dur | atio | n : 30 Minutes         |                     |                      |               | Marks: 14 |
|-----|------|------------------------|---------------------|----------------------|---------------|-----------|
| 1.  | Ch   | noose the correct an   | iswer:              |                      |               | (14×1=14) |
|     | 1)   | Polymers are           | in nature.          |                      |               |           |
|     |      | a) organic             | b) inorganic        | c) both a and b      | d) none       |           |
|     | 2)   | polymers               | cannot be recycle   | ed.                  |               |           |
|     |      | a) Thermoplasts        | b) Thermosets       | c) Elastomers        | d) All polyn  | ners      |
|     | 3)   | types of I and metals. | oiomaterials are us | sed as bridges bet   | ween human    | tissues   |
|     |      | a) Polymeric           | b) Ceramic          | c) Metallic          | d) All of the | ese       |
|     | 4)   | Which of the follow    | ing statements is   | true?                |               |           |
|     |      | a) Ceramic materia     | als have low melti  | ng point             |               |           |
|     |      | b) Porcelain is use    | ed as insulating ma | aterial in spark plu | ugs           |           |
|     |      | c) Graphite is visco   | oelastic in nature  |                      |               |           |
|     |      | d) Compacting iron     | n oxide powder ce   | ramic tools are p    | repared       |           |
|     | 5)   | materia                | als can be used to  | manufacture elas     | stomers.      |           |
|     |      | a) Limestone           | b) Petroleum        | c) Alcohol           | d) All of the | e above   |

| 6)  | Malleability means  a) Metals undergo plastic deformation under compressive stresses  b) Metals can be drawn into wires          |                |                 |                  |
|-----|----------------------------------------------------------------------------------------------------------------------------------|----------------|-----------------|------------------|
|     | <ul><li>c) Both a and b</li><li>d) None of the above</li></ul>                                                                   |                |                 |                  |
| 7)  | Ductility means  a) Metals can be drawn into s b) Metals undergo elastic defo c) Metals undergo plastic defo d) All of the above | ormation unde  |                 |                  |
| 8)  | Biosensors are used in                                                                                                           |                |                 |                  |
|     | a) medical field                                                                                                                 | b) agr         | icultural field |                  |
|     | c) pollution monitoring                                                                                                          | d) all d       | of the above    |                  |
| 9)  | Restorative biomaterials are de of the                                                                                           | signed to reco | over the shape  | and the function |
|     | a) teeth b) bone                                                                                                                 | c) tiss        | ue d)           | none of above    |
| 10) | are three-dimensio                                                                                                               | nal (3D) netwo | orks of atoms h | aving no regular |
|     | pattern to the spacing.                                                                                                          |                |                 |                  |
|     | a) Glasses b) Fiber                                                                                                              | c) Met         | tal d)          | Polymer          |
| l1) | Polycrystalline ceramics have                                                                                                    |                |                 |                  |
|     | a) glassy b) liquid                                                                                                              | c) soli        | d d)            | crystal          |
| 12) | is the ability of a response in a specific applicat                                                                              | -              | rform with an   | appropriate host |
|     | a) Reduction                                                                                                                     | b) Bio         | compatibility   |                  |
|     | c) Oxidation                                                                                                                     | d) Nor         | ne of above     |                  |
| 13) | Elastic deformation in polymer                                                                                                   | s is due to    |                 |                  |
|     | a) Slight adjust of molecular c                                                                                                  | hains          |                 |                  |
|     | b) Slippage of molecular chair                                                                                                   | າຣ             |                 |                  |
|     | c) Straightening of molecular                                                                                                    | chains         |                 |                  |
|     | d) Severe of covalent bonds                                                                                                      |                |                 |                  |
| 14) | One of characteristic propertie                                                                                                  | s of polymer n | naterial        |                  |
|     | a) High temperature stability                                                                                                    | b) Hig         | h mechanical    | strength         |
|     | c) High elongation                                                                                                               | d) Lov         | v hardness      |                  |



| Seat |  |
|------|--|
| No.  |  |

# S.E. (Biomedical Engg.) (Part – I) (New CBCS) Examination, 2018 BIOMATERIALS

Day and Date: Saturday, 5-5-2018 Marks: 56

Time: 2.30 p.m. to 5.30 p.m.

**Instructions**: 1) Figures to the **right** indicate **full** marks.

2) Assume suitable data wherever required.

#### SECTION - I

### 2. Attempt any four:

 $(4 \times 4 = 16)$ 

- 1) Classify biomaterial in detail.
- 2) Explain applications of stainless steel.
- 3) Explain applications of PTFE.
- 4) Explain classification of bioceramics and mention its any 2 applications.
- 5) What are bioglasses? Mention its any 2 applications.

## 3. Attempt any 2:

 $(6 \times 2 = 12)$ 

- 1) Explain biocompatibility test performed on Cobalt based alloy.
- 2) Explain various applications of composite biomaterials.
- 3) Write a short note on (structure, applications):
  - a) Silicon rubber
  - b) Carbon implants

#### SECTION - II

## 4. Attempt any four:

 $(4 \times 4 = 16)$ 

- 1) Explain which material is suited as bone cement? Mention its specifications.
- 2) Explain materials can be protected from corrosion.
- 3) Which materials are used for soft tissue replacement? Discuss their properties.



- 4) Define thermoplastic and thermosetting resins. Mention its any two applications.
- 5) Discuss the properties and types of materials used in breast implants.

5. Attempt any 2:

 $(6 \times 2 = 12)$ 

- 1) Explain how surface properties of biomaterials are tested.
- 2) Write a short note on (structure and applications):
  - a) Wood and leathers
  - b) Alumina and zirconia.
- 3) Explain any 2 methods of biological testing of biomaterials in short.

Set Q

| <br> | <br> |  |
|------|------|--|

| Seat |     |   |
|------|-----|---|
| No.  | Set | R |
|      |     |   |

# S.E. (Biomedical Engg.) (Part – I) (New CBCS) Examination, 2018 BIOMATERIALS

Day and Date: Saturday, 5-5-2018 Total Marks: 70

Time: 2.30 p.m. to 5.30 p.m.

- Instructions: 1) Q. No. 1 is compulsory. It should be solved in first
  30 minutes in Answer Book Page No. 3. Each question
  carries one mark.
  - 2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.
  - 3) Figures to the **right** indicate **full** marks.
  - 4) Assume suitable data wherever required.

## MCQ/Objective Type Questions

| Dura | ation : 30 Minutes                                                                                                                                                                                                                   | Marks: 14                                |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|
| 1.   | Choose the correct answer:                                                                                                                                                                                                           | (14×1=14)                                |
|      | 1) is the ability of a mater response in a specific application.                                                                                                                                                                     | rial to perform with an appropriate host |
|      | a) Reduction                                                                                                                                                                                                                         | b) Biocompatibility                      |
|      | c) Oxidation                                                                                                                                                                                                                         | d) None of above                         |
|      | <ul> <li>2) Elastic deformation in polymers is d</li> <li>a) Slight adjust of molecular chains</li> <li>b) Slippage of molecular chains</li> <li>c) Straightening of molecular chain</li> <li>d) Severe of covalent bonds</li> </ul> |                                          |
|      | <ul><li>3) One of characteristic properties of p</li><li>a) High temperature stability</li><li>c) High elongation</li></ul>                                                                                                          | -                                        |
|      | <ul><li>4) Polymers are in nature</li><li>a) organic</li><li>b) inorganic</li></ul>                                                                                                                                                  |                                          |
|      | 5) polymers cannot be recycle                                                                                                                                                                                                        | led.                                     |
|      | a) Thermoplasts b) Thermosets                                                                                                                                                                                                        |                                          |

| 6)         | types of biomaterials are used as bridges between human tissues and metals.                                                                      |                                                                                 |                                                                                |                                                                          |  |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------|--|
|            | and metals. a) Polymeric                                                                                                                         | h) Coramic                                                                      | o) Motallic                                                                    | d) All of those                                                          |  |
| 7)         |                                                                                                                                                  | •                                                                               | •                                                                              | u) All of these                                                          |  |
| 7)         | Which of the following statements is true?                                                                                                       |                                                                                 |                                                                                |                                                                          |  |
|            | a) Ceramic materi                                                                                                                                |                                                                                 | • .                                                                            |                                                                          |  |
|            | b) Porcelain is use                                                                                                                              | _                                                                               | ateriai in spark pil                                                           | ugs                                                                      |  |
|            | c) Graphite is visc                                                                                                                              |                                                                                 |                                                                                |                                                                          |  |
|            | d) Compacting iro                                                                                                                                | n oxide powder ce                                                               | eramic tools are p                                                             | repared                                                                  |  |
| 8)         |                                                                                                                                                  | als can be used to                                                              |                                                                                |                                                                          |  |
|            | a) Limestone                                                                                                                                     | b) Petroleum                                                                    | c) Alcohol                                                                     | d) All of the above                                                      |  |
| 9)         | Malleability means                                                                                                                               |                                                                                 |                                                                                |                                                                          |  |
|            | a) Metals undergo                                                                                                                                | •                                                                               | on under compres                                                               | ssive stresses                                                           |  |
|            | b) Metals can be o                                                                                                                               | drawn into wires                                                                |                                                                                |                                                                          |  |
|            | c) Both a and b                                                                                                                                  | _                                                                               |                                                                                |                                                                          |  |
|            | d) None of the abo                                                                                                                               | ove                                                                             |                                                                                |                                                                          |  |
| 10)        | Ductility means                                                                                                                                  |                                                                                 |                                                                                |                                                                          |  |
|            | a) Metals can be drawn into sheets                                                                                                               |                                                                                 |                                                                                |                                                                          |  |
|            | b) Metals undergo elastic deformation under tensile loads                                                                                        |                                                                                 |                                                                                |                                                                          |  |
|            | c) Metals undergo plastic deformation under tensile loads                                                                                        |                                                                                 |                                                                                |                                                                          |  |
|            | -                                                                                                                                                |                                                                                 |                                                                                |                                                                          |  |
| 44\        | d) All of the above                                                                                                                              |                                                                                 |                                                                                |                                                                          |  |
| 11)        | d) All of the above<br>Biosensors are use                                                                                                        |                                                                                 | b) agricultural fi                                                             | old                                                                      |  |
| 11)        | d) All of the above<br>Biosensors are use<br>a) medical field                                                                                    | ed in                                                                           | b) agricultural fi                                                             |                                                                          |  |
| ,          | <ul><li>d) All of the above</li><li>Biosensors are use</li><li>a) medical field</li><li>c) pollution monito</li></ul>                            | ed in<br>oring                                                                  | d) all of the abo                                                              | ve                                                                       |  |
| ,          | <ul><li>d) All of the above</li><li>Biosensors are use</li><li>a) medical field</li><li>c) pollution monito</li></ul>                            | ed in<br>oring                                                                  | d) all of the abo                                                              |                                                                          |  |
| ,          | <ul><li>d) All of the above</li><li>Biosensors are use</li><li>a) medical field</li><li>c) pollution monito</li><li>Restorative biomat</li></ul> | ed in<br>oring<br>erials are designed                                           | d) all of the abo                                                              | ve                                                                       |  |
| ,          | d) All of the above Biosensors are use a) medical field c) pollution monito Restorative biomat of the a) teeth                                   | ed in<br>oring<br>erials are designed<br>b) bone                                | d) all of the abo<br>d to recover the sh<br>c) tissue                          | ve<br>ape and the function                                               |  |
| 12)        | d) All of the above Biosensors are use a) medical field c) pollution monito Restorative biomat of the a) teeth                                   | ed in  oring  erials are designed  b) bone  ee-dimensional (3E                  | d) all of the abo<br>d to recover the sh<br>c) tissue                          | ve ape and the function d) none of above                                 |  |
| 12)        | d) All of the above Biosensors are use a) medical field c) pollution monito Restorative biomat of the a) teeth are three                         | ed in  oring  erials are designed  b) bone  ee-dimensional (3E                  | d) all of the abo<br>d to recover the sh<br>c) tissue                          | ve ape and the function d) none of above ns having no regular            |  |
| 12)<br>13) | d) All of the above Biosensors are use a) medical field c) pollution monito Restorative biomat of the a) teeth are thre pattern to the space     | ed in  oring  erials are designed  b) bone  ee-dimensional (3E  sing.  b) Fiber | d) all of the about to recover the shot c) tissue D) networks of ator c) Metal | ve ape and the function d) none of above ns having no regular d) Polymer |  |



| Seat |  |
|------|--|
| No.  |  |

# S.E. (Biomedical Engg.) (Part – I) (New CBCS) Examination, 2018 BIOMATERIALS

Day and Date: Saturday, 5-5-2018 Marks: 56

Time: 2.30 p.m. to 5.30 p.m.

**Instructions**: 1) Figures to the **right** indicate **full** marks.

2) Assume suitable data wherever required.

#### SECTION - I

### 2. Attempt any four:

 $(4 \times 4 = 16)$ 

- 1) Classify biomaterial in detail.
- 2) Explain applications of stainless steel.
- 3) Explain applications of PTFE.
- 4) Explain classification of bioceramics and mention its any 2 applications.
- 5) What are bioglasses? Mention its any 2 applications.

## 3. Attempt any 2:

 $(6 \times 2 = 12)$ 

- 1) Explain biocompatibility test performed on Cobalt based alloy.
- 2) Explain various applications of composite biomaterials.
- 3) Write a short note on (structure, applications):
  - a) Silicon rubber
  - b) Carbon implants

#### SECTION - II

## 4. Attempt any four:

 $(4 \times 4 = 16)$ 

- 1) Explain which material is suited as bone cement? Mention its specifications.
- 2) Explain materials can be protected from corrosion.
- 3) Which materials are used for soft tissue replacement? Discuss their properties.



- 4) Define thermoplastic and thermosetting resins. Mention its any two applications.
- 5) Discuss the properties and types of materials used in breast implants.

5. Attempt any 2:

 $(6 \times 2 = 12)$ 

- 1) Explain how surface properties of biomaterials are tested.
- 2) Write a short note on (structure and applications):
  - a) Wood and leathers
  - b) Alumina and zirconia.
- 3) Explain any 2 methods of biological testing of biomaterials in short.

Set R

| <br> | <br> | <br> |  |
|------|------|------|--|

| Seat |  |
|------|--|
| No.  |  |

Set

## S.E. (Biomedical Engg.) (Part – I) (New CBCS) Examination, 2018 **BIOMATERIALS**

Day and Date: Saturday, 5-5-2018 Total Marks: 70

Time: 2.30 p.m. to 5.30 p.m.

- Instructions: 1) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book Page No. 3. Each question carries one mark.
  - 2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.
  - 3) Figures to the **right** indicate **full** marks.
  - 4) Assume suitable data wherever required.

## MCQ/Objective Type Questions

| Dur | atic                       | n : 30 Minutes                                                                           |                                                                                                                  |                                 | Marks: 14                      |  |
|-----|----------------------------|------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|---------------------------------|--------------------------------|--|
| 1.  | Choose the correct answer: |                                                                                          |                                                                                                                  |                                 |                                |  |
|     | 1)                         | types of and metals.                                                                     | of biomaterials are u                                                                                            | used as bridges b               | etween human tissues           |  |
|     |                            | a) Polymeric                                                                             | b) Ceramic                                                                                                       | c) Metallic                     | d) All of these                |  |
|     | 2)                         | <ul><li>a) Ceramic mate</li><li>b) Porcelain is use</li><li>c) Graphite is vis</li></ul> | owing statements is<br>erials have low mel-<br>sed as insulating ma<br>scoelastic in nature<br>on oxide powder c | ting point<br>naterial in spark |                                |  |
|     | 3)                         |                                                                                          | rials can be used t<br>b) Petroleum                                                                              |                                 | lastomers. d) All of the above |  |
|     | 4)                         | •                                                                                        | go plastic deformat<br>drawn into wires                                                                          | ion under compr                 | ressive stresses               |  |

| 5)  | Ductility means <ul><li>a) Metals can be d</li><li>b) Metals undergo</li><li>c) Metals undergo</li><li>d) All of the above</li></ul> | elastic deformation |                     |                      |
|-----|--------------------------------------------------------------------------------------------------------------------------------------|---------------------|---------------------|----------------------|
| 6)  | Biosensors are use                                                                                                                   | ed in               |                     |                      |
|     | a) medical field                                                                                                                     |                     | b) agricultural fi  | eld                  |
|     | c) pollution monito                                                                                                                  | ring                | d) all of the abo   | ve                   |
| 7)  | Restorative biomate of the                                                                                                           | erials are designed | d to recover the sh | ape and the function |
|     | a) teeth                                                                                                                             | b) bone             | c) tissue           | d) none of above     |
| 8)  | are thre pattern to the spaci                                                                                                        |                     | ) networks of ato   | ms having no regular |
|     | a) Glasses                                                                                                                           | b) Fiber            | c) Metal            | d) Polymer           |
| 9)  | Polycrystalline cera                                                                                                                 | ımics have no       | componen            | ts.                  |
|     | a) glassy                                                                                                                            | b) liquid           | c) solid            | d) crystal           |
| 10) | is the response in a spec                                                                                                            |                     | al to perform with  | an appropriate host  |
|     | a) Reduction                                                                                                                         |                     | b) Biocompatibi     | lity                 |
|     | c) Oxidation                                                                                                                         |                     | d) None of above    | /e                   |
| 11) | Elastic deformation                                                                                                                  | in polymers is du   | ie to               |                      |
|     | a) Slight adjust of r                                                                                                                | molecular chains    |                     |                      |
|     | b) Slippage of mole                                                                                                                  | ecular chains       |                     |                      |
|     | c) Straightening of                                                                                                                  |                     |                     |                      |
|     | d) Severe of covale                                                                                                                  |                     |                     |                      |
| 12) | One of characterist                                                                                                                  |                     |                     |                      |
|     | a) High temperatur                                                                                                                   | e stability         | _                   | _                    |
|     | c) High elongation                                                                                                                   |                     | d) Low hardnes      | S                    |
| 13) | Polymers are                                                                                                                         |                     |                     |                      |
|     | a) organic                                                                                                                           | ,                   | •                   | d) none              |
| 14) | polymers                                                                                                                             | -                   |                     |                      |
|     | a) Thermoplasts                                                                                                                      | b) Thermosets       | c) Elastomers       | d) All polymers      |



| Seat |  |
|------|--|
| No.  |  |

# S.E. (Biomedical Engg.) (Part – I) (New CBCS) Examination, 2018 BIOMATERIALS

Day and Date: Saturday, 5-5-2018 Marks: 56

Time: 2.30 p.m. to 5.30 p.m.

**Instructions**: 1) Figures to the **right** indicate **full** marks.

2) Assume suitable data wherever required.

#### SECTION - I

### 2. Attempt any four:

 $(4 \times 4 = 16)$ 

- 1) Classify biomaterial in detail.
- 2) Explain applications of stainless steel.
- 3) Explain applications of PTFE.
- 4) Explain classification of bioceramics and mention its any 2 applications.
- 5) What are bioglasses? Mention its any 2 applications.

## 3. Attempt any 2:

 $(6 \times 2 = 12)$ 

- 1) Explain biocompatibility test performed on Cobalt based alloy.
- 2) Explain various applications of composite biomaterials.
- 3) Write a short note on (structure, applications):
  - a) Silicon rubber
  - b) Carbon implants

#### SECTION - II

### 4. Attempt any four:

 $(4 \times 4 = 16)$ 

- 1) Explain which material is suited as bone cement? Mention its specifications.
- 2) Explain materials can be protected from corrosion.
- 3) Which materials are used for soft tissue replacement? Discuss their properties.



- 4) Define thermoplastic and thermosetting resins. Mention its any two applications.
- 5) Discuss the properties and types of materials used in breast implants.

5. Attempt any 2:

 $(6 \times 2 = 12)$ 

- 1) Explain how surface properties of biomaterials are tested.
- 2) Write a short note on (structure and applications):
  - a) Wood and leathers
  - b) Alumina and zirconia.
- 3) Explain any 2 methods of biological testing of biomaterials in short.

Set S

| Seat |  |
|------|--|
| No.  |  |

7)  $IC = \beta I_B + ____$ 

a) I<sub>CBO</sub>

b) I<sub>C</sub>

Set

Р

# S.E. (Biomedical Engg.) (New CBCS) (Part – I) Examination, 2018 ELECTRONIC CIRCUITS ANALYSIS AND DESIGN – I

Day and Date: Monday, 7-5-2018 Max. Marks: 70 Time: 2.30 p.m. to 5.30 p.m. Instructions: 1) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book Page No. 3. Each question carries one mark. 2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page. MCQ/Objective Type Questions **Duration: 30 Minutes** Marks: 14 1. Choose the correct answer:  $(1 \times 14 = 14)$ 1) Shunting the ac component away from the load is the task of a \_\_\_\_\_\_ a) transformer b) filter c) regulator d) rectifier 2) With a 12 V supply, a silicon diode and a 370  $\Omega$  resistor in series, \_\_\_\_\_ voltage will be dropped across the diode. b) 0.7 V a) 0.3 V d) 1.4 V c) 0.9 V 3) The base of a transistor is \_\_\_\_\_ doped. a) heavily b) moderately c) lightly d) none of the above 4) The input impedance of a transistor is \_\_\_ b) low a) high c) very high d) almost zero 5) The value of  $\alpha$  of a transistor is a) more than 1 b) less than 1 d) none of the above c) 1 6) The relation between  $\beta$  and  $\alpha$  is a)  $\beta = 1/(1 - \alpha)$ b)  $\beta = (1 - \alpha)/\alpha$ c)  $\beta = \alpha/(1 - \alpha)$ d)  $\beta = \alpha/(1 + \alpha)$ 

c)  $\alpha I_{CEO}$ 

d)  $\alpha I_{\rm F}$ 

b) Width of clock pulsed) RC time constant

14) \_\_\_\_\_ controls the output pulse width of a one shot.

a) The clock frequency

c) RL time constant

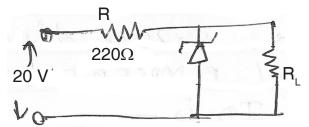
Set P



# S.E. (Biomedical Engg.) (New CBCS) (Part – I) Examination, 2018 ELECTRONIC CIRCUITS ANALYSIS AND DESIGN – I

Day and Date Monday, 7-5-2018

Time: 2.30 p.m. to 5.30 p.m.


SECTION - I

### 2. Attempt any four questions:

 $(4 \times 4 = 16)$ 

Marks: 56

- 1) A dc voltage with peak ripple voltage not exceeding 5 V is required to supply a 500  $\Omega$  load. Determine following if inductor filter and full wave rectifier is used.
  - a) Inductance required
  - b) Input voltage required.
- 2) Define following performance parameter of a voltage regulator:
  - a) Line and load regulation.
  - b) Ripple rejection.
- 3) Determine  $V_L$ ,  $I_L$ ,  $I_Z$  and  $I_R$  for network below :



Given,

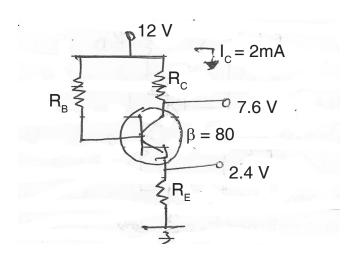
$$V_{7} = 20 \text{ V}$$

$$P_{7} = 400 \text{ mw}$$

$$R_L = 400 \Omega$$

- 4) Explain working of emitter follower regulator with necessary diagram.
- 5) Explain need of biasing of BJT and describe stability factor.
- 3. Attempt any 2 questions:

 $(6 \times 2 = 12)$ 

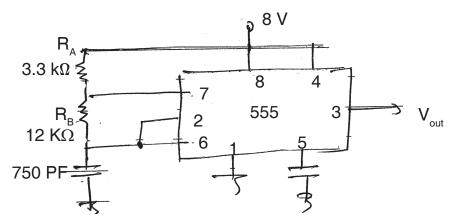

1) Design a zener voltage regulator for following specification.

$$V_{ip} = 20 \pm 2V$$
,  $V_{o} = 6V$ ,  $I_{c} = 50$  mA,  $I_{z} = 5$  mA,  $P_{z} = 0.5$  W.

2) State the expressions for ripple factor of a capacitor input filter with half wave and full wave rectifier and explain its significance.



3) Determine  $\rm R_{\rm C},\, R_{\rm E},\, R_{\rm B},\, V_{\rm CE}$  and  $\rm V_{\rm B}$  for given bias circuit.




SECTION - II

4. Attempt any four questions:

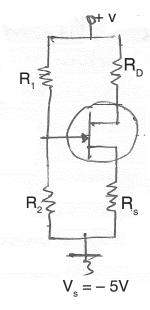
 $(4 \times 4 = 16)$ 

- 1) Explain BJT as a switch with the help of proper circuit and waveform.
- 2) Explain various methods of biasing JFET and MOSFET.
- 3) Differentiate between DIAC and TRIAC.
- 4) What is the duty cycle of the waveform at the output of the circuit given below.



5) Draw and explain V-I characteristic of MOSFET.






5. Attempt any 2 questions:

 $(6 \times 2 = 12)$ 

1) Design JFET circuit with voltage divider biasing as shown.

Given :  $I_{DSS}$  = 12 mA,  $V_{p}$  = -3.5 V,  $\lambda$  = 0,  $R_{1}$  +  $R_{2}$  = 100 k $\Omega$ ,  $I_{DSQ}$  = 5 mA,  $V_{DSQ}$  = 5 V.



- 2) Define following designing specification for single stage CE amplifier.
  - a) Band width
  - b) Voltage gain
  - c) Bias stability and emitter voltage.
- 3) Draw and explain working of pulse generator circuit using IC 74121 with waveform.

| <br> | <br> |  |
|------|------|--|

| Seat |     |   |
|------|-----|---|
| No.  | Set | Q |

### S.E. (Biomedical Engg.) (New CBCS) (Part – I) Examination, 2018 **ELECTRONIC CIRCUITS ANALYSIS AND DESIGN - I**

Max. Marks: 70 Day and Date: Monday, 7-5-2018 Time: 2.30 p.m. to 5.30 p.m. Instructions: 1) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book Page No. 3. Each question carries one mark. 2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page. MCQ/Objective Type Questions **Duration: 30 Minutes** Marks: 14  $(1 \times 14 = 14)$ 1. Choose the correct answer: 1) A JFET is also called as \_\_\_\_\_ transistor. a) unipolar b) bipolar d) none of the above c) unijunction 2) \_\_\_\_\_ has the lowest noise level. a) MOSFET b) Diode c) Zener diode d) JFET 3) A certain p channel E-MOSFET has  $V_{\rm GS(th)} = -2V$ . If  $V_{\rm GS} = 0$  V, then  $I_{\rm D}$  is b) I<sub>D (on)</sub> c) Maximum d)  $I_{DSS}$ a) 0mA 4) IGBT is a modern power semiconductor device that combine the characteristic of \_\_\_\_\_ a) BJT b) BJT and MOSFET

d) SCR

c) MOSFET and SCR

| 5)  | semicondu                                                                             | ıctor device acts li           | ke  | a diode and 2 tr                                            | ans  | sistors.              |
|-----|---------------------------------------------------------------------------------------|--------------------------------|-----|-------------------------------------------------------------|------|-----------------------|
|     | a) UJT                                                                                | b) Diac                        | c)  | Triac                                                       | d)   | SCR                   |
| 6)  | The                                                                                   | is defined as the ti           | me  | output is active                                            | divi | ided by the total     |
|     | period of the outpu                                                                   | t signal.                      |     |                                                             |      |                       |
|     | <ul><li>a) on time</li><li>c) duty cycle</li></ul>                                    |                                | ,   | off time active ratio                                       |      |                       |
| 7)  | a) The clock frequency RL time constant                                               |                                |     | vidth of a one sh<br>Width of clock<br>RC time consta       |      | se                    |
| 8)  | Shunting the ac cor a) transformer                                                    |                                |     |                                                             |      | of a<br>rectifier     |
| 9)  | With a 12 V supply voltage will be drop a) 0.3 V                                      |                                | ode | Э.                                                          |      | series,<br>1.4 V      |
| 0)  | The base of a trans<br>a) heavily<br>c) lightly                                       | sistor is (                    | b)  | ed.<br>moderately<br>none of the abo                        | ove  |                       |
| 1)  | The input impedan a) high                                                             | ce of a transistor i<br>b) low |     | very high                                                   | d)   | almost zero           |
| 12) | The value of $\alpha$ of a a) more than 1 c) 1                                        | a transistor is                | ,   | less than 1 none of the abo                                 | ove  |                       |
| Í   | The relation betwe<br>a) $\beta = 1/(1 - \alpha)$<br>c) $\beta = \alpha/(1 - \alpha)$ | ·                              | b)  | $\beta = (1 - \alpha)/\alpha$ $\beta = \alpha/(1 + \alpha)$ |      |                       |
| 14) | $IC = \beta I_B + \underline{\hspace{1cm}}$ a) $I_{CBO}$                              | b) I <sub>c</sub>              | c)  | $\alpha I_{\text{CEO}}$                                     | d)   | $\alpha I_{\text{E}}$ |



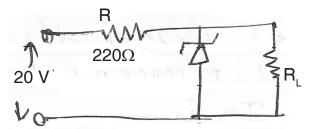
| Seat |  |
|------|--|
| No.  |  |

# S.E. (Biomedical Engg.) (New CBCS) (Part – I) Examination, 2018 ELECTRONIC CIRCUITS ANALYSIS AND DESIGN – I

Day and Date Monday, 7-5-2018

ay and Date Monday, 7-5-2016

Time: 2.30 p.m. to 5.30 p.m.


#### SECTION - I

### 2. Attempt any four questions:

 $(4 \times 4 = 16)$ 

Marks: 56

- 1) A dc voltage with peak ripple voltage not exceeding 5 V is required to supply a 500  $\Omega$  load. Determine following if inductor filter and full wave rectifier is used.
  - a) Inductance required
  - b) Input voltage required.
- 2) Define following performance parameter of a voltage regulator:
  - a) Line and load regulation.
  - b) Ripple rejection.
- 3) Determine  $V_L$ ,  $I_L$ ,  $I_Z$  and  $I_R$  for network below :



Given,

$$V_z = 20 \text{ V}$$

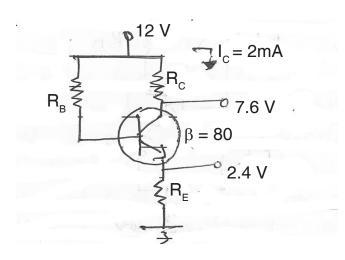
$$P_z = 400 \text{ mw}$$

$$R_1 = 400 \Omega$$

- 4) Explain working of emitter follower regulator with necessary diagram.
- 5) Explain need of biasing of BJT and describe stability factor.

## 3. Attempt any 2 questions:

 $(6 \times 2 = 12)$ 

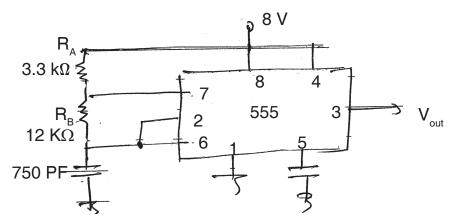

1) Design a zener voltage regulator for following specification.

$$V_{in} = 20 \pm 2V$$
,  $V_{o} = 6V$ ,  $I_{c} = 50$  mA,  $I_{z} = 5$  mA,  $P_{z} = 0.5$  W.

2) State the expressions for ripple factor of a capacitor input filter with half wave and full wave rectifier and explain its significance.



3) Determine  $\rm R_{\rm C},\, R_{\rm E},\, R_{\rm B},\, V_{\rm CE}$  and  $\rm V_{\rm B}$  for given bias circuit.




SECTION - II

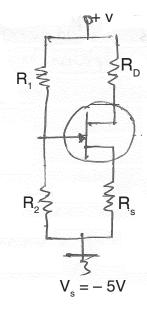
4. Attempt any four questions:

 $(4 \times 4 = 16)$ 

- 1) Explain BJT as a switch with the help of proper circuit and waveform.
- 2) Explain various methods of biasing JFET and MOSFET.
- 3) Differentiate between DIAC and TRIAC.
- 4) What is the duty cycle of the waveform at the output of the circuit given below.



5) Draw and explain V-I characteristic of MOSFET.




5. Attempt any 2 questions:

 $(6 \times 2 = 12)$ 

1) Design JFET circuit with voltage divider biasing as shown.

Given :  $I_{DSS}$  = 12 mA,  $V_p$  = -3.5 V,  $\lambda$  = 0,  $R_1$  +  $R_2$  = 100 k $\Omega$ ,  $I_{DSQ}$  = 5 mA,  $V_{DSQ}$  = 5 V.



- 2) Define following designing specification for single stage CE amplifier.
  - a) Band width
  - b) Voltage gain
  - c) Bias stability and emitter voltage.
- 3) Draw and explain working of pulse generator circuit using IC 74121 with waveform.



c) Zener diode

**SLR-TC - 432** 

| Seat |     |   |
|------|-----|---|
| No.  | Set | K |

# S.E. (Biomedical Engg.) (New CBCS) (Part – I) Examination, 2018 ELECTRONIC CIRCUITS ANALYSIS AND DESIGN – I

| ELECTRONIC CIRCUITS A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NALYSIS AND DESIGN – I                                                                                                                                 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| Day and Date : Monday, 7-5-2018<br>Time : 2.30 p.m. to 5.30 p.m.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Max. Marks: 70                                                                                                                                         |
| 30 minutes in Ar<br>carries one mark.<br>2) Answer MCQ/Ob                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | pulsory. It should be solved in first aswer Book Page No. 3. Each question ijective type questions on Page No. 3 to mention, Q.P. Set (P/Q/R/S) on Top |
| MCQ/Objective                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Type Questions                                                                                                                                         |
| Duration: 30 Minutes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Marks: 14                                                                                                                                              |
| 1. Choose the correct answer:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (1×14=14)                                                                                                                                              |
| <ol> <li>The value of α of a transistor is a) more than 1</li> <li>t</li> <li>a</li> <li>t</li> <li>t</li> <li>a</li> <li>t</li> <li>t</li> <li>a</li> <li>t</li> <li>t</li> <li>a</li> <li>t</li> <li>a</li> <li>t</li> <li>t<td>b) less than 1<br/>d) none of the above</td></li></ol> | b) less than 1<br>d) none of the above                                                                                                                 |
| a) $\beta = 1/(1 - \alpha)$<br>c) $\beta = \alpha/(1 - \alpha)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | b) $\beta = (1 - \alpha)/\alpha$<br>d) $\beta = \alpha/(1 + \alpha)$                                                                                   |
| 3) $IC = \beta I_B +$<br>a) $I_{CBO}$ b) $I_C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | c) $\alpha I_{CEO}$ d) $\alpha I_{E}$                                                                                                                  |
| <ul><li>4) A JFET is also called as</li><li>a) unipolar</li><li>c) unijunction</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | transistor. b) bipolar d) none of the above                                                                                                            |
| 5) has the lowest noise level a) MOSFET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | l.<br>b) Diode                                                                                                                                         |

6) A certain p channel E-MOSFET has  $V_{\rm GS(th)} = -$  2V. If  $V_{\rm GS} = 0$  V, then  $I_{\rm D}$  is

d) JFET

| a) 0 mA | b) I <sub>D (on)</sub> | c) Maximum | d) I <sub>DSS</sub> |
|---------|------------------------|------------|---------------------|

| 7)  | IGBT is a modern power semiconductor device that combine the characteristic of |                       |      | ne characteristic      |      |                  |
|-----|--------------------------------------------------------------------------------|-----------------------|------|------------------------|------|------------------|
|     | a) BJT<br>c) MOSFET and S                                                      |                       |      | BJT and MOSF<br>SCR    | ET   |                  |
| 8)  | semicondu                                                                      | uctor device acts li  | ke   | a diode and 2 tr       | ans  | sistors.         |
|     | a) UJT                                                                         | b) Diac               | c)   | Triac                  | d)   | SCR              |
| 9)  | The period of the output                                                       |                       | me   | output is active       | divi | ded by the total |
|     | a) on time                                                                     |                       | b)   | off time               |      |                  |
|     | c) duty cycle                                                                  |                       | d)   | active ratio           |      |                  |
| 10) | contro                                                                         | ols the output puls   | e v  | vidth of a one sh      | ot.  |                  |
|     | a) The clock frequ                                                             | ency                  | b)   | Width of clock         | puls | se               |
|     | c) RL time consta                                                              | nt                    | d)   | RC time consta         | ınt  |                  |
| 11) | Shunting the ac co                                                             |                       |      |                        |      |                  |
|     | a) transformer                                                                 | b) filter             | c)   | regulator              | d)   | rectifier        |
| 12) | With a 12 V supply                                                             | , a silicon diode a   | nd   | a 370 $\Omega$ resisto | r in | series,          |
|     | voltage will be drop                                                           | •                     |      |                        |      |                  |
|     | a) 0.3 V                                                                       | b) 0.7 V              | c)   | 0.9 V                  | d)   | 1.4 V            |
| 13) | The base of a tran-                                                            | sistor is             | dop  | ed.                    |      |                  |
|     | a) heavily                                                                     |                       | b)   | moderately             |      |                  |
|     | c) lightly                                                                     |                       | d)   | none of the abo        | ove  |                  |
| 14) | The input impedan                                                              | ice of a transistor i | is _ |                        |      |                  |
|     | a) high                                                                        | b) low                | c)   | very high              | d)   | almost zero      |
|     |                                                                                |                       |      |                        |      |                  |
|     |                                                                                |                       |      |                        |      |                  |

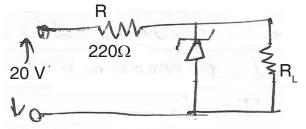


| Seat |  |
|------|--|
| No.  |  |

# S.E. (Biomedical Engg.) (New CBCS) (Part – I) Examination, 2018 ELECTRONIC CIRCUITS ANALYSIS AND DESIGN – I

Day and Date Monday, 7-5-2018

Time: 2.30 p.m. to 5.30 p.m.


Marks: 56

SECTION - I

### 2. Attempt any four questions:

 $(4 \times 4 = 16)$ 

- 1) A dc voltage with peak ripple voltage not exceeding 5 V is required to supply a 500  $\Omega$  load. Determine following if inductor filter and full wave rectifier is used.
  - a) Inductance required
  - b) Input voltage required.
- 2) Define following performance parameter of a voltage regulator :
  - a) Line and load regulation.
  - b) Ripple rejection.
- 3) Determine  $V_1$ ,  $I_1$ ,  $I_2$  and  $I_B$  for network below:



Given,

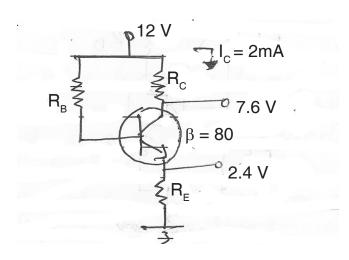
 $V_z = 20 \text{ V}$ 

 $P_z = 400 \text{ mw}$ 

 $R_1 = 400 \Omega$ .

- 4) Explain working of emitter follower regulator with necessary diagram.
- 5) Explain need of biasing of BJT and describe stability factor.
- 3. Attempt any 2 questions:

 $(6 \times 2 = 12)$ 

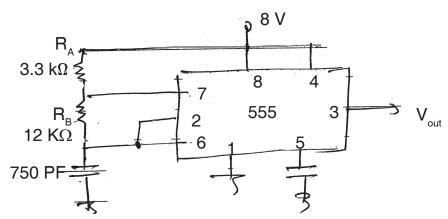

1) Design a zener voltage regulator for following specification.

$$V_{in} = 20 \pm 2V$$
,  $V_{o} = 6V$ ,  $I_{c} = 50$  mA,  $I_{z} = 5$  mA,  $P_{z} = 0.5$  W.

2) State the expressions for ripple factor of a capacitor input filter with half wave and full wave rectifier and explain its significance.



3) Determine  $\rm R_{\rm C},\, R_{\rm E},\, R_{\rm B},\, V_{\rm CE}$  and  $\rm V_{\rm B}$  for given bias circuit.




SECTION - II

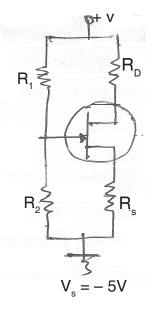
4. Attempt any four questions:

 $(4 \times 4 = 16)$ 

- 1) Explain BJT as a switch with the help of proper circuit and waveform.
- 2) Explain various methods of biasing JFET and MOSFET.
- 3) Differentiate between DIAC and TRIAC.
- 4) What is the duty cycle of the waveform at the output of the circuit given below.



5) Draw and explain V-I characteristic of MOSFET.




5. Attempt any 2 questions:

 $(6 \times 2 = 12)$ 

1) Design JFET circuit with voltage divider biasing as shown.

Given :  $I_{DSS}$  = 12 mA,  $V_p$  = -3.5 V,  $\lambda$  = 0,  $R_1$  +  $R_2$  = 100 k $\Omega$ ,  $I_{DSQ}$  = 5 mA,  $V_{DSQ}$  = 5 V.



- 2) Define following designing specification for single stage CE amplifier.
  - a) Band width
  - b) Voltage gain
  - c) Bias stability and emitter voltage.
- 3) Draw and explain working of pulse generator circuit using IC 74121 with waveform.

| Seat |     |   |
|------|-----|---|
| No.  | Set | 5 |

# S.E. (Biomedical Engg.) (New CBCS) (Part – I) Examination, 2018

|         | ELECTRO                                        | ONIC CIRCUI                           | rs analysis and de                                                                                                | SIGN – I                                                |
|---------|------------------------------------------------|---------------------------------------|-------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|
|         | nd Date : Monday<br>2.30 p.m. to 5.30          |                                       |                                                                                                                   | Max. Marks: 70                                          |
|         |                                                | 30 minutes ocarries one m  Answer MCC | compulsory. It should<br>in Answer Book Page No<br>eark.<br>D'Objective type question<br>orget to mention, Q.P. S | o. 3. Each question ons on Page No. 3                   |
|         |                                                | MCQ/Objec                             | tive Type Questions                                                                                               |                                                         |
| Duratio | on: 30 Minutes                                 |                                       |                                                                                                                   | Marks: 14                                               |
|         | oose the correct<br>A certain p cha            |                                       | T has $V_{GS(th)} = -2V$ . If $V_{GS(th)}$                                                                        | $(1 \times 14 = 14)$ <sub>GS</sub> = 0 V, then $I_D$ is |
| 2)      | a) 0 mA IGBT is a moder of a) BJT c) MOSFET an | n power semico                        | c) Maximum<br>nductor device that combin<br>b) BJT and MOSF<br>d) SCR                                             | e the characteristic                                    |
| 3)      | a) UJT                                         |                                       | acts like a diode and 2 tra                                                                                       | ansistors.<br>d) SCR                                    |
| 4)      | The period of the out a) on time c) duty cycle |                                       | b) off time<br>d) active ratio                                                                                    | divided by the total                                    |
| 5)      | a) The clock free c) RL time cons              | equency                               | ut pulse width of a one sh<br>b) Width of clock p<br>d) RC time consta                                            | oulse                                                   |
| 6)      | Shunting the ac a) transformer                 | -                                     | ay from the load is the ta<br>c) regulator                                                                        | sk of a<br>d) rectifier                                 |

| 7)  | With a 12 V supply, a silicon diode a               |                                                           | or in series,     |
|-----|-----------------------------------------------------|-----------------------------------------------------------|-------------------|
|     | voltage will be dropped across the a 0.3 V b) 0.7 V | c) 0.9 V                                                  | d) 1.4 V          |
| 8)  | The base of a transistor is                         | •                                                         |                   |
|     | <ul><li>a) heavily</li><li>c) lightly</li></ul>     | <ul><li>b) moderately</li><li>d) none of the ab</li></ul> | oove              |
| 9)  | The input impedance of a transistor                 |                                                           |                   |
|     | a) high b) low                                      | c) very high                                              | d) almost zero    |
| 10) | The value of $\alpha$ of a transistor is            |                                                           |                   |
|     | a) more than 1                                      | b) less than 1                                            |                   |
|     | c) 1                                                | d) none of the ab                                         | ove               |
| 11) | The relation between $\beta$ and $\alpha$ is        |                                                           |                   |
|     | a) $\beta = 1/(1 - \alpha)$                         | b) $\beta = (1 - \alpha)/\alpha$                          |                   |
|     | c) $\beta = \alpha/(1-\alpha)$                      | d) $\beta = \alpha/(1 + \alpha)$                          |                   |
| 12) | $IC = \beta I_B + \underline{\hspace{1cm}}$         |                                                           |                   |
|     | a) I <sub>CBO</sub> b) I <sub>C</sub>               | c) $\alpha I_{CEO}$                                       | d) $\alpha I_{E}$ |
| 13) | A JFET is also called as                            | transistor.                                               |                   |
|     | a) unipolar                                         | b) bipolar                                                |                   |
|     | c) unijunction                                      | d) none of the ab                                         | ove               |
| 14) | has the lowest noise level                          |                                                           |                   |
| ,   | a) MOSFET                                           | b) Diode                                                  |                   |
|     | c) Zener diode                                      | d) JFET                                                   |                   |
|     |                                                     |                                                           |                   |

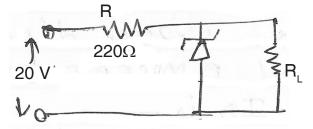


| Seat |  |
|------|--|
| No.  |  |

# S.E. (Biomedical Engg.) (New CBCS) (Part – I) Examination, 2018 ELECTRONIC CIRCUITS ANALYSIS AND DESIGN – I

Day and Date Monday, 7-5-2018

Time: 2.30 p.m. to 5.30 p.m.


#### SECTION - I

### 2. Attempt any four questions:

 $(4 \times 4 = 16)$ 

Marks: 56

- 1) A dc voltage with peak ripple voltage not exceeding 5 V is required to supply a 500  $\Omega$  load. Determine following if inductor filter and full wave rectifier is used.
  - a) Inductance required
  - b) Input voltage required.
- 2) Define following performance parameter of a voltage regulator :
  - a) Line and load regulation.
  - b) Ripple rejection.
- 3) Determine  $V_L$ ,  $I_L$ ,  $I_Z$  and  $I_R$  for network below :



Given,

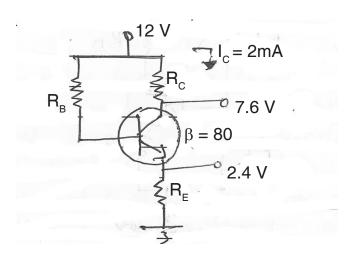
$$V_{7} = 20 \text{ V}$$

$$P_{7} = 400 \text{ mw}$$

$$R_1 = 400 \Omega$$
.

- 4) Explain working of emitter follower regulator with necessary diagram.
- 5) Explain need of biasing of BJT and describe stability factor.
- 3. Attempt any 2 questions :

 $(6 \times 2 = 12)$ 

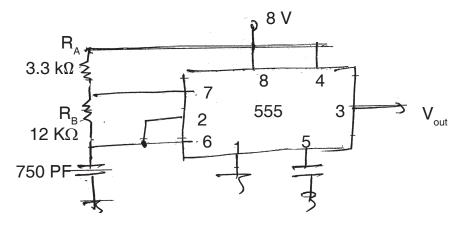

1) Design a zener voltage regulator for following specification.

$$V_{in} = 20 \pm 2V$$
,  $V_{o} = 6V$ ,  $I_{c} = 50$  mA,  $I_{z} = 5$  mA,  $P_{z} = 0.5$  W.

2) State the expressions for ripple factor of a capacitor input filter with half wave and full wave rectifier and explain its significance.



3) Determine  $\rm R_{\rm C},\, R_{\rm E},\, R_{\rm B},\, V_{\rm CE}$  and  $\rm V_{\rm B}$  for given bias circuit.




SECTION - II

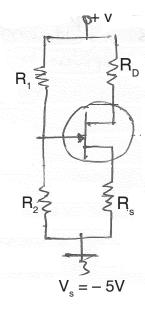
4. Attempt any four questions:

 $(4 \times 4 = 16)$ 

- 1) Explain BJT as a switch with the help of proper circuit and waveform.
- 2) Explain various methods of biasing JFET and MOSFET.
- 3) Differentiate between DIAC and TRIAC.
- 4) What is the duty cycle of the waveform at the output of the circuit given below.



5) Draw and explain V-I characteristic of MOSFET.




5. Attempt any 2 questions:

 $(6 \times 2 = 12)$ 

1) Design JFET circuit with voltage divider biasing as shown.

Given :  $I_{DSS}$  = 12 mA,  $V_p$  = -3.5 V,  $\lambda$  = 0,  $R_1$  +  $R_2$  = 100 k $\Omega$ ,  $I_{DSQ}$  = 5 mA,  $V_{DSQ}$  = 5 V.



- 2) Define following designing specification for single stage CE amplifier.
  - a) Band width
  - b) Voltage gain
  - c) Bias stability and emitter voltage.
- 3) Draw and explain working of pulse generator circuit using IC 74121 with waveform.

| Seat |  |
|------|--|
| No.  |  |

Set P

# S.E. (Biomedical Engg.) (Part – I) (New CBCS) Examination, 2018 LINEAR CIRCUIT ANALYSIS

Day and Date: Tuesday, 8-5-2018 Total Marks: 70

Time: 2.30 p.m. to 5.30 p.m.

- Instructions: 1) Q. No. 1 is compulsory. It should be solved in first
  30 minutes in Answer Book Page No. 3. Each question
  carries one mark.
  - 2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

## **MCQ/Objective Type Questions**

| Dur | atio                                                                                                                                                          | n : 30 Minutes       |                         |             |                 |             | Marks: 14 |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------------|-------------|-----------------|-------------|-----------|
| 1.  | Ch                                                                                                                                                            | noose the correct ar | nswer:                  |             |                 |             | (1×14=14) |
|     | 1)                                                                                                                                                            | i                    | s not a bilate          | eral.       |                 |             |           |
|     |                                                                                                                                                               | a) Resistor          | b) Diode                | c)          | Capacitor       | d) Inductor |           |
|     | 2)                                                                                                                                                            | In active filter,    |                         | element i   | s absent.       |             |           |
|     |                                                                                                                                                               | a) Inductor          |                         | b)          | Capacitor       |             |           |
|     |                                                                                                                                                               | c) Both a) and b)    |                         | d)          | Resistor        |             |           |
|     | 3)                                                                                                                                                            | Reactive power dra   | awn by a pu             | re resistor | is              |             |           |
|     |                                                                                                                                                               | a) 0                 |                         | b)          | Minimum         |             |           |
|     |                                                                                                                                                               | c) Maximum           |                         | d) .        | Average         |             |           |
|     | 4)                                                                                                                                                            | Under resonance of   | condition, the          | e power fa  | ctor of a syste | em is       |           |
|     |                                                                                                                                                               | a) Unity             | b) Lagging              | g c)        | Leading         | d) Any of a | bove      |
|     | 5) In an AC circuit containing pure inductance, the voltage applied in 120V, 50Hz, while the current is 10A. The value of inductance with the current is 10A. |                      |                         |             |                 |             | be        |
|     |                                                                                                                                                               | a) 35 mH             | b) 34 mH                | c)          | 30 mH           | d) 38 mH    |           |
|     | 6)                                                                                                                                                            | In 2 port network, 2 | $Z_{12} = Z_{21}$ indic | cates       | p               | roperty.    |           |
|     |                                                                                                                                                               | a) Unilateral        | b) Bilatera             | al c)       | Linear          | d) Non-line | ar        |

| 7)  | Advantage of active                                              | e filter is                                          |                                                       |                                                                   |  |  |
|-----|------------------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------------------|--|--|
|     | a) Do not offer aga                                              | in                                                   | b) Easy to tune                                       |                                                                   |  |  |
|     | c) Both a) and b)                                                |                                                      | d) Derive high in                                     | mpedance load                                                     |  |  |
| 8)  | Number of an ideal especially for casca                          |                                                      | •                                                     | •                                                                 |  |  |
|     | a) Zero                                                          | b) Unity                                             | c) Infinity                                           | d) Unpredictable                                                  |  |  |
| 9)  |                                                                  |                                                      | •                                                     | e $V_s = 100V$ in series with $5\Omega$ and edance parameters are |  |  |
|     | a) $\begin{bmatrix} 20 & 2 \\ 40 & 10 \end{bmatrix}$             | b) $\begin{bmatrix} 20 & 40 \\ 2 & 10 \end{bmatrix}$ | c) $\begin{bmatrix} 10 & 40 \\ 10 & 20 \end{bmatrix}$ | d) $\begin{bmatrix} 20 & 2 \\ 10 & 40 \end{bmatrix}$              |  |  |
| 10) | In series R – L circu                                            | uit, power factor c                                  | an be defined as                                      |                                                                   |  |  |
|     | a) R/Z                                                           | b) P/S                                               | c) V <sub>r</sub> /V                                  | d) All above                                                      |  |  |
| 11) | Superposition theor                                              | em is not applica                                    | ble for                                               |                                                                   |  |  |
|     | a) Current calculati                                             | on                                                   | b) Voltage calcu                                      | ulation                                                           |  |  |
|     | c) Power calculation                                             | n                                                    | d) Energy calcu                                       | lation                                                            |  |  |
| 12) | A circuit with a resist for Hz. If all the compared frequency is | oonents values are                                   | e now doubled, th                                     | ne new resonant                                                   |  |  |
|     | a) 2f <sub>0</sub>                                               | b) f <sub>o</sub>                                    | c) f <sub>0</sub> /4                                  | d) $f_0/2$                                                        |  |  |
|     | In a series R-L-C ci frequency is                                |                                                      |                                                       |                                                                   |  |  |
|     | a) $2 \times 10^4$ Hz<br>A network contains                      | b) $\frac{1}{\pi} \times 10^4 \text{Hz}$             | c) 10 <sup>4</sup> Hz                                 | d) $2\pi \times 10^4 \text{ Hz}$                                  |  |  |
| 14) | A network contains the values of all res                         | only an independ<br>istors are doubled               | lent current sourd<br>d. The value of th              | e and resistors. If e node voltages will                          |  |  |
|     | a) Becomes half                                                  |                                                      | b) Remain unch                                        | anged                                                             |  |  |
|     | c) Becomes double                                                | 9                                                    | d) None of the a                                      | above                                                             |  |  |
|     |                                                                  |                                                      |                                                       |                                                                   |  |  |

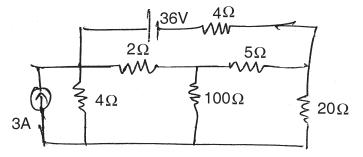


| Seat |  |
|------|--|
| No.  |  |

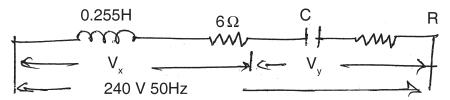
# S.E. (Biomedical Engg.) (Part – I) (New CBCS) Examination, 2018 LINEAR CIRCUIT ANALYSIS

Day and Date: Tuesday, 8-5-2018

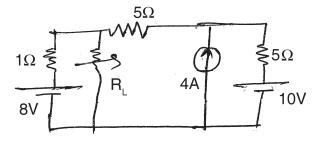
Time: 2.30 p.m. to 5.30 p.m.


SECTION - I

2. Attempt any 4 questions:


 $(4 \times 4 = 16)$ 

Marks: 56

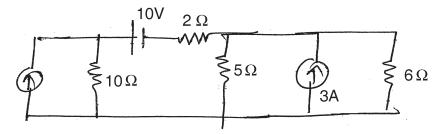

1) Determine the current through the  $5\Omega$  resistor using nodal analysis.



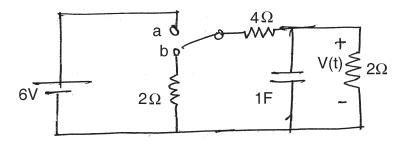
- 2) State and explain superposition theorem.
- 3) Find the values of R and C, so that  $V_x = 3V_y$ ,  $V_x$  and  $V_y$  are in quadrature.



- 4) Compare between Thevenin's theorem and Norton's theorem.
- 5) For the circuit shown, find the value of resistance  $R_{\rm L}$  for maximum power and calculate maximum power.







3. Attempt any two questions:

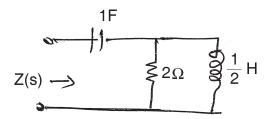
 $(6 \times 2 = 12)$ 

1) Using Thevenin's theorem, find the current through the  $6\Omega$  resistor.



2) For the network shown below, the switch is moved from 'a' to 'b' at t = 0, find V(t).

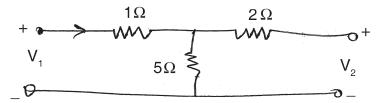



- 3) Write a short note on:
  - a) Mesh and Nodal analysis.
  - b) Current and voltage source transformation.

SECTION - II

4. Attempt any 4 questions:

 $(4 \times 4 = 16)$ 


- 1) With the help of neat diagram, explain working of band pass and band reject filter.
- 2) Find poles and zeros of the impedance of the following network and plot them on S-plane.

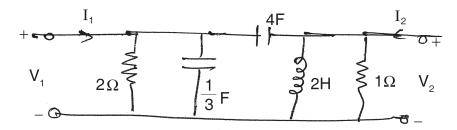


3) Derive condition for reciprocity for open circuit impedance parameter.



4) Find the transmission parameter for the network shown.




5) Explain how 2 port network can be represented by an equivalent T network.

-5-

## 5. Attempt any 2 questions:

 $(6 \times 2 = 12)$ 

1) Find Y parameter for shown network.



- 2) Draw and explain concept of notch filtering using RC and RL circuits.
- 3) Write a short note on:
  - a) ABCD parameter in term of Z parameter.
  - b) ABCD parameter in term of Y parameter.

\_\_\_\_

|             | <br>_ |   |
|-------------|-------|---|
| Seat<br>No. | Set   | Q |
|             | l L   |   |

# S.E. (Biomedical Engg.) (Part – I) (New CBCS) Examination, 2018 LINEAR CIRCUIT ANALYSIS

Day and Date : Tuesday, 8-5-2018 Total Marks : 70

Time: 2.30 p.m. to 5.30 p.m.

- Instructions: 1) Q. No. 1 is compulsory. It should be solved in first
  30 minutes in Answer Book Page No. 3. Each question
  carries one mark.
  - 2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

### MCQ/Objective Type Questions

| Dur | atio | n : 30 Minutes                                                   |                                                      |                                                       |                                                      | Marks: 14 |
|-----|------|------------------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------|-----------|
| 1.  | Ch   | noose the correct an                                             | swer:                                                |                                                       |                                                      | (1×14=14) |
|     | 1)   | Number of an ideal especially for casca                          |                                                      | •                                                     | ncies in pass<br>_                                   | band      |
|     |      | a) Zero                                                          | b) Unity                                             | c) Infinity                                           | d) Unpredic                                          | ctable    |
|     | 2)   | A 2 port network is terminated in a 25Ω                          |                                                      | 3                                                     |                                                      |           |
|     |      | a) $\begin{bmatrix} 20 & 2 \\ 40 & 10 \end{bmatrix}$             | b) $\begin{bmatrix} 20 & 40 \\ 2 & 10 \end{bmatrix}$ | c) $\begin{bmatrix} 10 & 40 \\ 10 & 20 \end{bmatrix}$ | d) $\begin{bmatrix} 20 & 2 \\ 10 & 40 \end{bmatrix}$ |           |
|     | 3)   | In series R – L circu                                            | uit, power factor c                                  | an be defined as                                      |                                                      |           |
|     |      | a) R/Z                                                           | b) P/S                                               | c) V <sub>r</sub> /V                                  | d) All above                                         | е         |
|     | 4)   | Superposition theor                                              | rem is not applica                                   | ble for                                               |                                                      |           |
|     |      | a) Current calculati                                             | ion                                                  | b) Voltage calcu                                      | ılation                                              |           |
|     |      | c) Power calculation                                             | on                                                   | d) Energy calcu                                       | lation                                               |           |
|     | 5)   | A circuit with a resist for Hz. If all the compared frequency is | onents values ar                                     | •                                                     |                                                      |           |
|     |      | a) 2f <sub>0</sub>                                               | b) f <sub>o</sub>                                    | c) f <sub>0</sub> /4                                  | d) $f_0/2$                                           |           |

| 6)  | In a series R-L-C cir frequency is             |                                          |        |                |       |                               |
|-----|------------------------------------------------|------------------------------------------|--------|----------------|-------|-------------------------------|
|     | a) 2 × 10 <sup>4</sup> Hz                      | b) $\frac{1}{\pi} \times 10^4 \text{Hz}$ | c) 1   | 10⁴Hz          | d)    | $2\pi \times 10^4 \text{ Hz}$ |
| 7)  | A network contains the values of all resi      | only an independ                         | dent d | current sour   | ce ar | nd resistors. If              |
|     | a) Becomes half                                |                                          | b) F   | Remain uncl    | nang  | jed                           |
|     | c) Becomes double                              |                                          | d) 1   | None of the    | abov  | /e                            |
| 8)  | is                                             | not a bilateral.                         |        |                |       |                               |
|     | a) Resistor                                    |                                          | c) (   | Capacitor      | d)    | Inductor                      |
| 9)  | In active filter,                              | eleme                                    | ent is | s absent.      |       |                               |
|     | a) Inductor                                    |                                          | b) (   | Capacitor      |       |                               |
|     | c) Both a) and b)                              |                                          | d) F   | Resistor       |       |                               |
| 10) | ) Reactive power drawn by a pure resistor is   |                                          |        |                |       |                               |
|     | a) 0                                           |                                          | b) N   | Minimum        |       |                               |
|     | c) Maximum                                     |                                          | d) A   | Average        |       |                               |
| 11) | Under resonance co                             | ondition, the powe                       | er fac | ctor of a syst | tem   | is                            |
|     | a) Unity                                       | b) Lagging                               | c) L   | _eading        | d)    | Any of above                  |
| 12) | In an AC circuit cont<br>120V, 50Hz, while the | • .                                      |        |                |       | •                             |
|     | a) 35 mH                                       | b) 34 mH                                 | c) 3   | 30 mH          | d)    | 38 mH                         |
| 13) | In 2 port network, Z                           | $_{12} = Z_{21}$ indicates _             |        |                | prop  | erty.                         |
|     | a) Unilateral                                  | b) Bilateral                             |        | ∟inear         |       | Non-linear                    |
| 14) | Advantage of active                            | filter is                                |        |                |       |                               |
|     | a) Do not offer agai                           | n                                        | b) E   | Easy to tune   |       |                               |
|     | c) Both a) and b)                              |                                          | d) [   | Derive high i  | mpe   | dance load                    |
|     |                                                |                                          |        |                |       |                               |

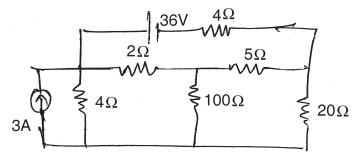


| Seat |  |
|------|--|
| No.  |  |

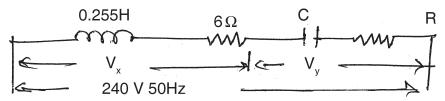
# S.E. (Biomedical Engg.) (Part – I) (New CBCS) Examination, 2018 LINEAR CIRCUIT ANALYSIS

Day and Date: Tuesday, 8-5-2018

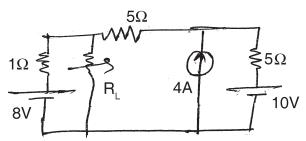
Time: 2.30 p.m. to 5.30 p.m.


Marks: 56

#### SECTION - I


### 2. Attempt any 4 questions:

 $(4 \times 4 = 16)$ 

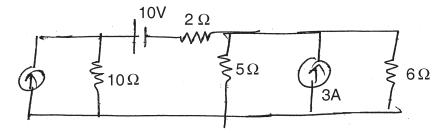

1) Determine the current through the  $5\Omega$  resistor using nodal analysis.



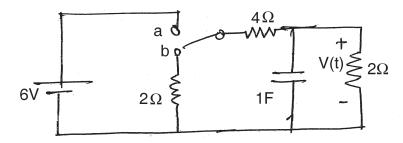
- 2) State and explain superposition theorem.
- 3) Find the values of R and C, so that  $V_x = 3V_y$ ,  $V_x$  and  $V_y$  are in quadrature.



- 4) Compare between Thevenin's theorem and Norton's theorem.
- 5) For the circuit shown, find the value of resistance  $R_{\rm L}$  for maximum power and calculate maximum power.







3. Attempt any two questions:

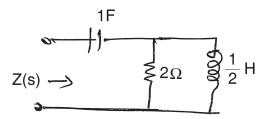
 $(6 \times 2 = 12)$ 

1) Using Thevenin's theorem, find the current through the  $6\Omega$  resistor.



2) For the network shown below, the switch is moved from 'a' to 'b' at t = 0, find V(t).



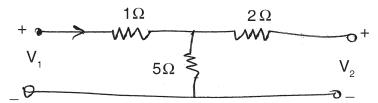

- 3) Write a short note on:
  - a) Mesh and Nodal analysis.
  - b) Current and voltage source transformation.

SECTION - II

4. Attempt any 4 questions:

 $(4 \times 4 = 16)$ 

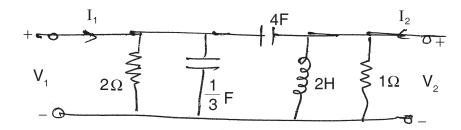
- 1) With the help of neat diagram, explain working of band pass and band reject filter.
- 2) Find poles and zeros of the impedance of the following network and plot them on S-plane.




3) Derive condition for reciprocity for open circuit impedance parameter.

-5-




4) Find the transmission parameter for the network shown.



- 5) Explain how 2 port network can be represented by an equivalent T network.
- 5. Attempt any 2 questions:

 $(6 \times 2 = 12)$ 

1) Find Y parameter for shown network.



- 2) Draw and explain concept of notch filtering using RC and RL circuits.
- 3) Write a short note on:
  - a) ABCD parameter in term of Z parameter.
  - b) ABCD parameter in term of Y parameter.

\_\_\_\_

| Seat |  |
|------|--|
| No.  |  |

Set F

# S.E. (Biomedical Engg.) (Part – I) (New CBCS) Examination, 2018 LINEAR CIRCUIT ANALYSIS

Day and Date: Tuesday, 8-5-2018 Total Marks: 70

Time: 2.30 p.m. to 5.30 p.m.

- Instructions: 1) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book Page No. 3. Each question carries one mark.
  - 2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

### **MCQ/Objective Type Questions**

|     |      |                                                                                                                                           | •                                                    | 71                                                    |                                                      |  |
|-----|------|-------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------|--|
| Dur | atio | n : 30 Minutes                                                                                                                            |                                                      |                                                       | Marks: 14                                            |  |
| 1.  | Ch   | noose the correct ar                                                                                                                      | nswer:                                               |                                                       | (1×14=14)                                            |  |
|     | 1)   | 1) In an AC circuit containing pure inductance, the voltage applied is 120V, 50Hz, while the current is 10A. The value of inductance will |                                                      |                                                       |                                                      |  |
|     |      | a) 35 mH                                                                                                                                  | b) 34 mH                                             | c) 30 mH                                              | d) 38 mH                                             |  |
|     | 2)   | In 2 port network,                                                                                                                        | $Z_{12} = Z_{21}$ indicates                          | S                                                     | property.                                            |  |
|     |      | a) Unilateral                                                                                                                             |                                                      |                                                       |                                                      |  |
|     | 3)   | Advantage of activ                                                                                                                        | e filter is                                          |                                                       |                                                      |  |
|     |      | a) Do not offer ag                                                                                                                        | ain                                                  | b) Easy to tune                                       |                                                      |  |
|     |      | c) Both a) and b)                                                                                                                         |                                                      | d) Derive hig                                         | h impedance load                                     |  |
|     | 4)   | Number of an idea especially for case                                                                                                     |                                                      |                                                       | uencies in pass band                                 |  |
|     |      | a) Zero                                                                                                                                   | b) Unity                                             | c) Infinity                                           | d) Unpredictable                                     |  |
|     | 5)   |                                                                                                                                           |                                                      | · ·                                                   | series with $5\Omega$ and neters are                 |  |
|     |      | a) $\begin{bmatrix} 20 & 2 \\ 40 & 10 \end{bmatrix}$                                                                                      | b) $\begin{bmatrix} 20 & 40 \\ 2 & 10 \end{bmatrix}$ | c) $\begin{bmatrix} 10 & 40 \\ 10 & 20 \end{bmatrix}$ | d) $\begin{bmatrix} 20 & 2 \\ 10 & 40 \end{bmatrix}$ |  |



| 6)  | In series R – L circu                                                                                                                                  | uit, power factor c                    | an    | be defined as       |                                  |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-------|---------------------|----------------------------------|
|     | a) R/Z                                                                                                                                                 | b) P/S                                 | c)    | $V_r/V$             | d) All above                     |
| 7)  | Superposition theor                                                                                                                                    | rem is not applica                     | ble   | for                 |                                  |
|     | a) Current calculati                                                                                                                                   | on                                     | b)    | Voltage calcu       | lation                           |
|     | c) Power calculation                                                                                                                                   | n                                      | d)    | Energy calcu        | lation                           |
| 8)  | A circuit with a resist for Hz. If all the compared frequency is                                                                                       | oonents values ar<br>                  | e n   | ow doubled, th      | e new resonant                   |
|     | a) 2f <sub>0</sub>                                                                                                                                     | b) f <sub>o</sub>                      | c)    | f <sub>0</sub> /4   | d) $f_0/2$                       |
| 9)  | In a series R-L-C ci frequency is                                                                                                                      |                                        | . = 1 | H, $C = 1/400  \mu$ | uf. The resonant                 |
|     | a) 2 × 10 <sup>4</sup> Hz                                                                                                                              | b) $\frac{1}{2} \times 10^4 \text{Hz}$ | c)    | 10⁴Hz               | d) $2\pi \times 10^4 \text{ Hz}$ |
| 10) | ) A network contains only an independent current source and resistors. If the values of all resistors are doubled. The value of the node voltages will |                                        |       |                     |                                  |
|     | a) Becomes half                                                                                                                                        | e                                      | b)    | Remain unch         | anged                            |
|     | c) Becomes double                                                                                                                                      | e                                      | d)    | None of the a       | bove                             |
| 11) | is                                                                                                                                                     | s not a bilateral.                     |       |                     |                                  |
|     | a) Resistor                                                                                                                                            | b) Diode                               | c)    | Capacitor           | d) Inductor                      |
| 12) | In active filter,                                                                                                                                      | elem                                   | ent   | is absent.          |                                  |
|     | a) Inductor                                                                                                                                            |                                        | b)    | Capacitor           |                                  |
|     | c) Both a) and b)                                                                                                                                      |                                        | d)    | Resistor            |                                  |
| 13) | Reactive power dra                                                                                                                                     | wn by a pure resi                      | isto  | r is                |                                  |
|     | a) 0                                                                                                                                                   |                                        | b)    | Minimum             |                                  |
|     | c) Maximum                                                                                                                                             |                                        | d)    | Average             |                                  |
| 14) | Under resonance co                                                                                                                                     | ondition, the pow                      | er f  | actor of a syste    | em is                            |
|     | a) Unity                                                                                                                                               | b) Lagging                             | c)    | Leading             | d) Any of above                  |
|     |                                                                                                                                                        |                                        |       |                     |                                  |

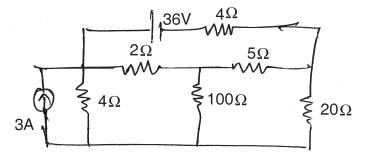


| Seat |  |
|------|--|
| No.  |  |

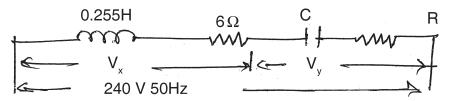
# S.E. (Biomedical Engg.) (Part – I) (New CBCS) Examination, 2018 LINEAR CIRCUIT ANALYSIS

Day and Date: Tuesday, 8-5-2018

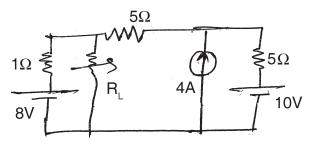
Time: 2.30 p.m. to 5.30 p.m.


#### SECTION - I

### 2. Attempt any 4 questions:


 $(4 \times 4 = 16)$ 

Marks: 56

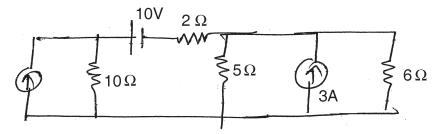

1) Determine the current through the  $5\Omega$  resistor using nodal analysis.



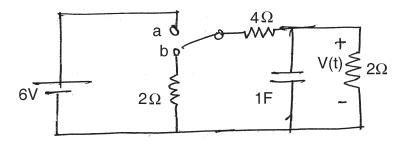
- 2) State and explain superposition theorem.
- 3) Find the values of R and C, so that  $V_x = 3V_y$ ,  $V_x$  and  $V_y$  are in quadrature.



- 4) Compare between Thevenin's theorem and Norton's theorem.
- 5) For the circuit shown, find the value of resistance  $R_{\rm L}$  for maximum power and calculate maximum power.







3. Attempt any two questions:

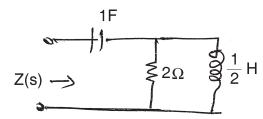
 $(6 \times 2 = 12)$ 

1) Using Thevenin's theorem, find the current through the  $6\Omega$  resistor.



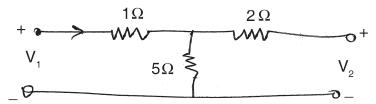
2) For the network shown below, the switch is moved from 'a' to 'b' at t = 0, find V(t).




- 3) Write a short note on:
  - a) Mesh and Nodal analysis.
  - b) Current and voltage source transformation.

SECTION - II

4. Attempt any 4 questions:


 $(4 \times 4 = 16)$ 

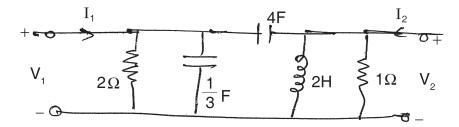
- 1) With the help of neat diagram, explain working of band pass and band reject filter.
- 2) Find poles and zeros of the impedance of the following network and plot them on S-plane.



3) Derive condition for reciprocity for open circuit impedance parameter.

4) Find the transmission parameter for the network shown.




5) Explain how 2 port network can be represented by an equivalent T network.

-5-

5. Attempt any 2 questions:

 $(6 \times 2 = 12)$ 

1) Find Y parameter for shown network.



- 2) Draw and explain concept of notch filtering using RC and RL circuits.
- 3) Write a short note on:
  - a) ABCD parameter in term of Z parameter.
  - b) ABCD parameter in term of Y parameter.

| Seat |  |
|------|--|
| No.  |  |

c) Becomes double

# S.E. (Biomedical Engg.) (Part – I) (New CBCS) Examination, 2018 LINEAR CIRCUIT ANALYSIS

| _                                                                                                                                                                                  |                                                                                                      |                                                     |                                    |                                                                                         |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-----------------------------------------------------|------------------------------------|-----------------------------------------------------------------------------------------|--|
| •                                                                                                                                                                                  | nd Date : Tueso<br>2.30 p.m. to 5.                                                                   | •                                                   |                                    | Total Marks : 70                                                                        |  |
|                                                                                                                                                                                    |                                                                                                      | carries <b>one</b> mark.<br>2) <b>Answer MCQ/Ob</b> | swer Book Page<br>iective type que | d be solved in first e No. 3. Each question estions on Page No. 3 Q.P. Set (P/Q/R/S) on |  |
|                                                                                                                                                                                    |                                                                                                      | MCQ/Objective                                       | Type Question                      | ns                                                                                      |  |
| Duration                                                                                                                                                                           | on : 30 Minutes                                                                                      |                                                     |                                    | Marks: 14                                                                               |  |
| <ol> <li>Choose the correct answer : (1×14=1</li> <li>In series R – L circuit, power factor can be defined as</li> </ol>                                                           |                                                                                                      |                                                     |                                    | (1×14=14)                                                                               |  |
|                                                                                                                                                                                    | a) R/Z                                                                                               | b) P/S                                              | c) V <sub>r</sub> /V               | d) All above                                                                            |  |
| 2                                                                                                                                                                                  | 2) Superposition theorem is not applicable for                                                       |                                                     |                                    |                                                                                         |  |
| a) Current calculation                                                                                                                                                             |                                                                                                      | b) Voltage calculation                              |                                    |                                                                                         |  |
|                                                                                                                                                                                    | c) Power calculation                                                                                 |                                                     | d) Energy calculation              |                                                                                         |  |
| 3) A circuit with a resistor, inductor and capacitor in series is resonant at<br>f <sub>0</sub> Hz. If all the components values are now doubled, the new resonant<br>frequency is |                                                                                                      |                                                     |                                    |                                                                                         |  |
|                                                                                                                                                                                    | a) 2f <sub>0</sub>                                                                                   | b) f <sub>o</sub>                                   | c) f <sub>0</sub> /4               | d) $f_0/2$                                                                              |  |
| 4)                                                                                                                                                                                 | 4) In a series R-L-C circuit, R = $2k\Omega$ , L = 1H, C = $1/400~\mu f$ . The resonant frequency is |                                                     |                                    |                                                                                         |  |
|                                                                                                                                                                                    | a) $2 \times 10^4 \text{ Hz}$                                                                        | b) $\frac{1}{7} \times 10^4 \text{Hz}$              | c) 10 <sup>4</sup> Hz              | d) $2\pi \times 10^4 \text{ Hz}$                                                        |  |
| 5)                                                                                                                                                                                 |                                                                                                      |                                                     |                                    | ource and resistors. If of the node voltages will                                       |  |
|                                                                                                                                                                                    | a) Becomes h                                                                                         | —<br>nalf                                           | b) Remain u                        | ınchanged                                                                               |  |

d) None of the above

| 6)  | is                                                   | not a bilateral.                                     |                                                       |                                                      |
|-----|------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------|
|     | a) Resistor                                          | b) Diode                                             | c) Capacitor                                          | d) Inductor                                          |
| 7)  | In active filter,                                    | eleme                                                | ent is absent.                                        |                                                      |
|     | a) Inductor                                          |                                                      | b) Capacitor                                          |                                                      |
|     | c) Both a) and b)                                    |                                                      | d) Resistor                                           |                                                      |
| 8)  | Reactive power dra                                   | wn by a pure resi                                    | stor is                                               |                                                      |
|     | a) 0                                                 |                                                      | b) Minimum                                            |                                                      |
|     | c) Maximum                                           |                                                      | d) Average                                            |                                                      |
| 9)  | Under resonance co                                   | ondition, the powe                                   | er factor of a syste                                  | em is                                                |
|     | a) Unity                                             | b) Lagging                                           | c) Leading                                            | d) Any of above                                      |
| 10) | In an AC circuit con<br>120V, 50Hz, while t          | • .                                                  | •                                                     | • •                                                  |
|     |                                                      |                                                      |                                                       |                                                      |
|     | a) 35 mH                                             | b) 34 mH                                             | c) 30 mH                                              | d) 38 mH                                             |
| 11) | In 2 port network, Z                                 | $_{12} = Z_{21}$ indicates _                         |                                                       | property.                                            |
|     | a) Unilateral                                        | b) Bilateral                                         | c) Linear                                             | d) Non-linear                                        |
| 12) | Advantage of active                                  | filter is                                            |                                                       |                                                      |
|     | a) Do not offer again                                | in                                                   | b) Easy to tune                                       |                                                      |
|     | c) Both a) and b)                                    |                                                      | d) Derive high in                                     | npedance load                                        |
| 13) | Number of an ideal especially for casca              |                                                      | •                                                     | ncies in pass band<br>_                              |
|     | a) Zero                                              | b) Unity                                             | c) Infinity                                           | d) Unpredictable                                     |
| 14) | A 2 port network is terminated in a $25\Omega$       |                                                      |                                                       |                                                      |
|     | a) $\begin{bmatrix} 20 & 2 \\ 40 & 10 \end{bmatrix}$ | b) $\begin{bmatrix} 20 & 40 \\ 2 & 10 \end{bmatrix}$ | c) $\begin{bmatrix} 10 & 40 \\ 10 & 20 \end{bmatrix}$ | d) $\begin{bmatrix} 20 & 2 \\ 10 & 40 \end{bmatrix}$ |

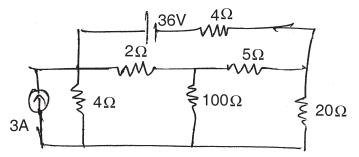


| Seat |  |
|------|--|
| No.  |  |

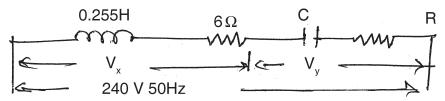
# S.E. (Biomedical Engg.) (Part – I) (New CBCS) Examination, 2018 LINEAR CIRCUIT ANALYSIS

Day and Date: Tuesday, 8-5-2018

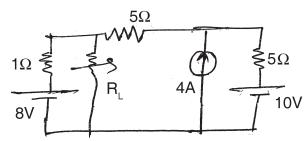
Time: 2.30 p.m. to 5.30 p.m.


SECTION - I

2. Attempt any 4 questions:


 $(4 \times 4 = 16)$ 

Marks: 56

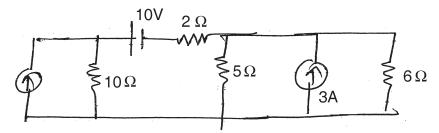

1) Determine the current through the  $5\Omega$  resistor using nodal analysis.



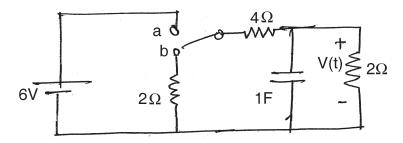
- 2) State and explain superposition theorem.
- 3) Find the values of R and C, so that  $V_x = 3V_y$ ,  $V_x$  and  $V_y$  are in quadrature.



- 4) Compare between Thevenin's theorem and Norton's theorem.
- 5) For the circuit shown, find the value of resistance  $R_{\rm L}$  for maximum power and calculate maximum power.







3. Attempt any two questions:

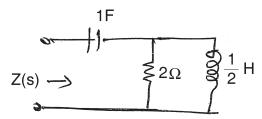
 $(6 \times 2 = 12)$ 

1) Using Thevenin's theorem, find the current through the  $6\Omega$  resistor.



2) For the network shown below, the switch is moved from 'a' to 'b' at t = 0, find V(t).

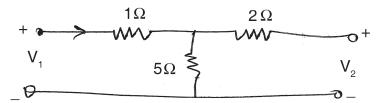



- 3) Write a short note on:
  - a) Mesh and Nodal analysis.
  - b) Current and voltage source transformation.

SECTION - II

4. Attempt **any 4** questions:

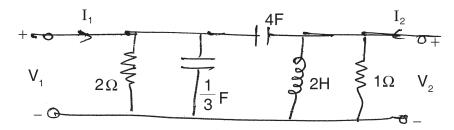
 $(4 \times 4 = 16)$ 


- 1) With the help of neat diagram, explain working of band pass and band reject filter.
- 2) Find poles and zeros of the impedance of the following network and plot them on S-plane.



3) Derive condition for reciprocity for open circuit impedance parameter.




4) Find the transmission parameter for the network shown.



- 5) Explain how 2 port network can be represented by an equivalent T network.
- 5. Attempt any 2 questions:

 $(6 \times 2 = 12)$ 

1) Find Y parameter for shown network.



- 2) Draw and explain concept of notch filtering using RC and RL circuits.
- 3) Write a short note on:
  - a) ABCD parameter in term of Z parameter.
  - b) ABCD parameter in term of Y parameter.

\_\_\_\_

Seat No.

Max. Marks: 70

## S.E. (Bio-Medical Engineering) (Part – I) (Old CGPA) Examination, 2018 **ENGINEERING MATHEMATICS – III**

Day and Date: Thursday, 3-5-2018

Time: 2.30 p.m. to 5.30 p.m.

- Instructions: 1) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book Page No. 3. Each question carries one mark.
  - 2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.
  - 3) Figures to right indicate full marks.
  - 4) Assume suitable data whenever necessary.

### MCQ/Objective Type Questions

**Duration: 30 Minutes** Marks: 14

1. Choose the correct answer:

 $(14 \times 1 = 14)$ 

a) 
$$\frac{1}{(s+1)^2}$$

b) 
$$-\frac{1}{(s+1)^2}$$

c) 
$$\frac{s}{(s+1)^2}$$

a) 
$$\frac{1}{(s+1)^2}$$
 b)  $-\frac{1}{(s+1)^2}$  c)  $\frac{s}{(s+1)^2}$  d)  $-\frac{s}{(s+1)^2}$ 

2) 
$$L^{-1}\left\{\frac{s-4}{\left(s-4\right)^2+5^2}\right\} =$$

- a)  $e^{4t} \sin 5t$  b)  $e^{-4t} \sin 5t$  c)  $e^{4t} \cos 5t$  d)  $e^{-4t} \cos 5t$

3) 
$$L^{-1}\left\{\frac{1}{3s-1}\right\} =$$

- a) e<sup>t</sup>
- b)  $\frac{e^{\frac{t}{3}}}{3}$  c)  $\frac{e^{t}}{3}$
- d)  $\frac{e^{-\frac{1}{3}}}{3}$

- 4) If  $L\{f(t)\} = \Phi(s)$  then  $L\{f(at)\}$  is

  - a)  $\Phi\left(\frac{s}{a}\right)$  b)  $\frac{1}{s}\Phi\left(\frac{s}{a}\right)$  c)  $\frac{1}{a}\Phi\left(\frac{s}{a}\right)$  d)  $\Phi'\left(\frac{s}{a}\right)$
- 5) Cauchy-Riemann equations for f(z) to be analytic are
  - a)  $u_{x} = v_{x}, u_{y} = -v_{y}$

b)  $u_x = v_y, u_y = -v_x$ 

c)  $u_{x} = -v_{x}, u_{y} = v_{y}$ 

d)  $u_{x} = -v_{y}, u_{y} = v_{x}$ 

- 6) A function  $\Phi(x, y)$  having continuous partial derivatives of the first and second order is called harmonic function if
  - a)  $\nabla \Phi = 0$

b)  $\nabla \Phi \neq 0$ 

c)  $\nabla^2 \Phi = 0$ 

- d)  $\nabla^2 \Phi \neq 0$
- 7) The mapping w = f(z) is conformal if
  - a) f(z) is analytic and f'(z) = 0
  - b) f(z) is analytic and  $f'(z) \neq 0$
  - c) f(z) is not analytic and  $f'(z) \neq 0$
  - d) None of these
- 8) Fourier expansion of an even function in the range  $(-\pi, \pi)$  has
  - a) Only sine terms
  - b) Only cosine terms
  - c) Both sine and cosine terms
  - d) None
- 9) If  $f(x) = x^4$  in (-1, 1), then the Fourier coefficient  $b_n$  is equal to
  - a) 1

b) π

c) 0

- d) None
- 10) For the function  $f(x) = \begin{cases} -k, & -\pi < x < 0 \\ k, & 0 < x < \pi \end{cases}$  the value of  $a_0$  in Fourier expansion will be . . .
  - a) k

b) 2k

c) 0

- d) –k
- 11) In the mapping  $W = \frac{1}{z}$  the interior of the unit circle |z| = 1 is mapped onto
  - a) The interior of the unit circle
- b) The boundary of the unit circle

c) On the x-axis

- d) On the exterior of the unit circle
- 12) The value of integration,  $\int_{c} \frac{\sin z}{z} dz$ , C: |z| = 1 is
  - a) 0

b) π i

c)  $-\pi i$ 

 $d) - 2\pi i$ 

- 13) If  $f(z) = \overline{z}$ , then f'(z)
  - a) equal to 1

b) equal to 0

c) does not exist

- d) equal to -1
- 14) In the mapping w = 4z, the region x = 0, y = 0, x + y = 1 is transformed into
  - a) a square

b) a circle

c) a triangle

d) none of these



Seat No.

# S.E. (Bio-Medical Engineering) (Part – I) (Old CGPA) Examination, 2018 ENGINEERING MATHEMATICS – III

Day and Date: Thursday, 3-5-2018 Marks: 56

Time: 2.30 p.m. to 5.30 p.m.

**Instructions**: 1) Figures to the **right** indicate **full** marks.

2) Assume suitable data whenever necessary.

SECTION - I

#### 2. Attempt any four:

 $(4 \times 4 = 16)$ 

- 1) Find the Laplace transform of e4t sin3t.
- 2) Find the Laplace transform of  $f(t) = t^2$ , 0 < t < 2, where f(t) is a periodic function with period 2.
- 3) Find the  $L^{-1} \left\{ \frac{1}{2} log \left( \frac{s^2 + 2^2}{s^2 + 3^2} \right) \right\}$ .
- 4) Find k such that  $\frac{1}{2}log(x^2 + y^2) + itan^{-1}\frac{kx}{y}$  is analytic.
- 5) Find the Laplace transform of  $e^{-4t} \int_0^t u \sin 3u du$ .

## 3. Attempt any two:

(6×2=12)

- 1) Solve using Laplace transform  $\frac{d^2y}{dt^2} + 4\frac{dy}{dt} + 8y = 1$ , where y(0) = 0, y'(0) = 1.
- 2) Find the orthogonal trajectories of the family of the curve  $3x^2y y^3 = c$ .
- 3) Find  $L^{-1}\left\{\frac{s^2}{\left(s^2+1\right)\left(s^2+4\right)}\right\}$  by convolution theorem.

# 

#### SECTION - II

4. Attempt any four:

 $(4 \times 4 = 16)$ 

- 1) Find the image of the circle  $(x-3)^2 + y^2 = 2$  under the transformation  $w = \frac{1}{z}$ .
- 2) Obtain Fourier series of  $f(x) = \begin{cases} \pi x & 0 \le x \le 1 \\ \pi(2-x) & 1 \le x \le 2 \end{cases}$  with period 2.
- 3) Find half range fourier sine series of f(x) = x(2 x) in 0 < x < 2.
- 4) Evaluate  $\int_0^{1+i} (x^2 iy) dz$ , along (i) the line y = x (ii) the parabola  $y = x^2$ .
- 5) Evaluate  $\oint_C \frac{z^2+z+1}{z-1} dz$ , where C is contour (i) z=1, (ii)  $|z|=\frac{1}{2}$ .
- 5. Attempt any two:

 $(6 \times 2 = 12)$ 

- 1) Find the half range sine series for  $f(x) = \begin{cases} \frac{1}{2} + x, & -\frac{1}{2} < x < 0 \\ \frac{1}{2} x, & 0 < x < \frac{1}{2} \end{cases}.$
- 2) Find the Fourier series for  $f(x) = \frac{\pi x}{2}$  in the interval  $(0, 2\pi)$ . Also prove that

$$\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots$$

3) Find the bilinear transformation which maps the points z = 0, -i, -1 onto the points w = i, 1, 0.

|  | шш |  |  |
|--|----|--|--|

| Seat |  |
|------|--|
| No.  |  |

### S.E. (Bio-Medical Engineering) (Part – I) (Old CGPA) Examination, 2018 **ENGINEERING MATHEMATICS – III**

Day and Date: Thursday, 3-5-2018

Max. Marks: 70

Time: 2.30 p.m. to 5.30 p.m.

Instructions: 1) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book Page No. 3. Each question carries one mark.

- 2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.
- 3) Figures to right indicate full marks.
- 4) Assume suitable data whenever necessary.

#### MCQ/Objective Type Questions

**Duration: 30 Minutes** Marks: 14

1. Choose the correct answer:

 $(14 \times 1 = 14)$ 

- 1) Fourier expansion of an even function in the range  $(-\pi, \pi)$  has
  - a) Only sine terms
  - b) Only cosine terms
  - c) Both sine and cosine terms
  - d) None
- 2) If  $f(x) = x^4$  in (-1, 1), then the Fourier coefficient  $b_n$  is equal to
  - a) 1

b) π

c) 0

d) None

- 3) For the function  $f(x) = \begin{cases} -k, & -\pi < x < 0 \\ k, & 0 < x < \pi \end{cases}$  the value of  $a_0$  in Fourier expansion will be . . .
  - a) k

b) 2k

c) 0

d) -k

- 4) In the mapping  $W = \frac{1}{z}$  the interior of the unit circle |z| = 1 is mapped onto
  - a) The interior of the unit circle

b) The boundary of the unit circle

c) On the x-axis

d) On the exterior of the unit circle

- 5) The value of integration,  $\int_{C} \frac{\sin z}{z} dz$ , C: |z| = 1 is
  - a) 0

b)  $\pi i$  c)  $-\pi i$ 

d) - 2 πi

- 6) If  $f(z) = \overline{z}$ , then f'(z)
  - a) equal to 1

b) equal to 0

c) does not exist

- d) equal to -1
- 7) In the mapping w = 4z, the region x = 0, y = 0, x + y = 1 is transformed into
  - a) a square

b) a circle

c) a triangle

d) none of these

8) L{t e<sup>-t</sup>} is

a) 
$$\frac{1}{(s+1)^2}$$

a) 
$$\frac{1}{(s+1)^2}$$
 b)  $-\frac{1}{(s+1)^2}$  c)  $\frac{s}{(s+1)^2}$  d)  $-\frac{s}{(s+1)^2}$ 

c) 
$$\frac{s}{(s+1)^2}$$

d) 
$$-\frac{s}{(s+1)^2}$$

- 9)  $L^{-1}\left\{\frac{s-4}{(s-4)^2+5^2}\right\}=$ 
  - a) e<sup>4t</sup> sin 5t

- b)  $e^{-4t} \sin 5t$  c)  $e^{4t} \cos 5t$  d)  $e^{-4t} \cos 5t$
- 10)  $L^{-1}\left\{\frac{1}{3s-1}\right\} =$ 
  - a) et

- b)  $\frac{e^{\frac{t}{3}}}{2}$  c)  $\frac{e^{t}}{3}$
- 11) If  $L\{f(t)\} = \Phi(s)$  then  $L\{f(at)\}$  is

  - a)  $\Phi\left(\frac{s}{a}\right)$  b)  $\frac{1}{s}\Phi\left(\frac{s}{a}\right)$  c)  $\frac{1}{a}\Phi\left(\frac{s}{a}\right)$  d)  $\Phi'\left(\frac{s}{a}\right)$
- 12) Cauchy-Riemann equations for f(z) to be analytic are
  - a)  $u_{x} = v_{x}, u_{y} = -v_{y}$

b)  $u_x = v_y$ ,  $u_y = -v_x$ d)  $u_x = -v_y$ ,  $u_y = v_x$ 

c)  $u_{x} = -v_{x}$ ,  $u_{y} = v_{y}$ 

- 13) A function  $\Phi(x, y)$  having continuous partial derivatives of the first and second order is called harmonic function if
  - a)  $\nabla \Phi = 0$

b)  $\nabla \Phi \neq 0$ 

c)  $\nabla^2 \Phi = 0$ 

- d)  $\nabla^2 \Phi \neq 0$
- 14) The mapping w = f(z) is conformal if
  - a) f(z) is analytic and f'(z) = 0
  - b) f(z) is analytic and  $f'(z) \neq 0$
  - c) f(z) is not analytic and  $f'(z) \neq 0$
  - d) None of these



Seat No.

# S.E. (Bio-Medical Engineering) (Part – I) (Old CGPA) Examination, 2018 ENGINEERING MATHEMATICS – III

Day and Date: Thursday, 3-5-2018 Marks: 56

Time: 2.30 p.m. to 5.30 p.m.

**Instructions**: 1) Figures to the **right** indicate **full** marks.

2) Assume suitable data whenever necessary.

SECTION - I

#### 2. Attempt any four:

 $(4 \times 4 = 16)$ 

- 1) Find the Laplace transform of e<sup>4t</sup> sin<sup>3</sup>t.
- 2) Find the Laplace transform of  $f(t) = t^2$ , 0 < t < 2, where f(t) is a periodic function with period 2.
- 3) Find the  $L^{-1} \left\{ \frac{1}{2} log \left( \frac{s^2 + 2^2}{s^2 + 3^2} \right) \right\}$ .
- 4) Find k such that  $\frac{1}{2}log(x^2 + y^2) + itan^{-1}\frac{kx}{y}$  is analytic.
- 5) Find the Laplace transform of  $e^{-4t} \int_0^t u \sin 3u du$ .

## 3. Attempt any two:

 $(6 \times 2 = 12)$ 

- 1) Solve using Laplace transform  $\frac{d^2y}{dt^2} + 4\frac{dy}{dt} + 8y = 1$ , where y(0) = 0, y'(0) = 1.
- 2) Find the orthogonal trajectories of the family of the curve  $3x^2y y^3 = c$ .
- 3) Find  $L^{-1}\left\{\frac{s^2}{\left(s^2+1\right)\left(s^2+4\right)}\right\}$  by convolution theorem.

# 

#### SECTION - II

4. Attempt any four:

 $(4 \times 4 = 16)$ 

- 1) Find the image of the circle  $(x-3)^2 + y^2 = 2$  under the transformation  $w = \frac{1}{z}$ .
- 2) Obtain Fourier series of  $f(x) = \begin{cases} \pi x & 0 \le x \le 1 \\ \pi(2-x) & 1 \le x \le 2 \end{cases}$  with period 2.
- 3) Find half range fourier sine series of f(x) = x(2 x) in 0 < x < 2.
- 4) Evaluate  $\int_0^{1+i} (x^2 iy) dz$ , along (i) the line y = x (ii) the parabola  $y = x^2$ .
- 5) Evaluate  $\oint_C \frac{z^2+z+1}{z-1} dz$ , where C is contour (i) z=1, (ii)  $|z|=\frac{1}{2}$ .
- 5. Attempt any two:

 $(6 \times 2 = 12)$ 

- 1) Find the half range sine series for  $f(x) = \begin{cases} \frac{1}{2} + x, & -\frac{1}{2} < x < 0 \\ \frac{1}{2} x, & 0 < x < \frac{1}{2} \end{cases}.$
- 2) Find the Fourier series for  $f(x) = \frac{\pi x}{2}$  in the interval  $(0, 2\pi)$ . Also prove that

$$\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots$$

3) Find the bilinear transformation which maps the points z = 0, -i, -1 onto the points w = i, 1, 0.

| Seat |  |
|------|--|
| No.  |  |

### S.E. (Bio-Medical Engineering) (Part – I) (Old CGPA) Examination, 2018 **ENGINEERING MATHEMATICS – III**

Day and Date: Thursday, 3-5-2018 Max. Marks: 70

Time: 2.30 p.m. to 5.30 p.m.

Instructions: 1) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book Page No. 3. Each question carries one mark.

- 2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.
- 3) Figures to right indicate full marks.
- 4) Assume suitable data whenever necessary.

### MCQ/Objective Type Questions

**Duration: 30 Minutes** Marks: 14

1. Choose the correct answer:

 $(14 \times 1 = 14)$ 

1) Cauchy-Riemann equations for f(z) to be analytic are

a) 
$$u_x = v_x$$
,  $u_y = -v_y$ 

b) 
$$u_x = v_y$$
,  $u_y = -v_x$   
d)  $u_x = -v_y$ ,  $u_y = v_x$ 

c) 
$$u_{x}^{x} = -v_{x}^{x}, u_{y}^{y} = v_{y}^{y}$$

d) 
$$u_x = -v_y$$
,  $u_y = v_x$ 

2) A function  $\Phi(x, y)$  having continuous partial derivatives of the first and second order is called harmonic function if

a) 
$$\nabla \Phi = 0$$

b) 
$$\nabla \Phi \neq 0$$

c) 
$$\nabla^2 \Phi = 0$$

d) 
$$\nabla^2 \Phi \neq 0$$

3) The mapping w = f(z) is conformal if

- a) f(z) is analytic and f'(z) = 0
- b) f(z) is analytic and  $f'(z) \neq 0$
- c) f(z) is not analytic and  $f'(z) \neq 0$
- d) None of these

4) Fourier expansion of an even function in the range  $(-\pi, \pi)$  has

- a) Only sine terms
- b) Only cosine terms
- c) Both sine and cosine terms
- d) None

5) If  $f(x) = x^4$  in (-1, 1), then the Fourier coefficient  $b_a$  is equal to

a) 1

b) π

c) 0

d) None



- 6) For the function  $f(x) = \begin{cases} -k, & -\pi < x < 0 \\ k, & 0 < x < \pi \end{cases}$  the value of  $a_0$  in Fourier expansion will be . . .
  - a) k

b) 2k

c) 0

- d) -k
- 7) In the mapping  $W = \frac{1}{2}$  the interior of the unit circle |z| = 1 is mapped onto
  - a) The interior of the unit circle
- b) The boundary of the unit circle

c) On the x-axis

- d) On the exterior of the unit circle
- 8) The value of integration,  $\int_{c}^{c} \frac{\sin z}{z} dz$ , C: |z| = 1 is
  - a) 0

b) πi

c)  $-\pi i$ 

d)  $-2\pi i$ 

- 9) If  $f(z) = \overline{z}$ , then f'(z)
  - a) equal to 1

b) equal to 0

c) does not exist

- d) equal to -1
- 10) In the mapping w = 4z, the region x = 0, y = 0, x + y = 1 is transformed into
  - a) a square

b) a circle

c) a triangle

d) none of these

11) L{t e<sup>-t</sup>} is

a) 
$$\frac{1}{(s+1)^2}$$

a) 
$$\frac{1}{(s+1)^2}$$
 b)  $-\frac{1}{(s+1)^2}$  c)  $\frac{s}{(s+1)^2}$  d)  $-\frac{s}{(s+1)^2}$ 

c) 
$$\frac{s}{(s+1)^2}$$

d) 
$$-\frac{s}{(s+1)^2}$$

- 12)  $L^{-1}\left\{\frac{s-4}{(s-4)^2+5^2}\right\}=$ 
  - a)  $e^{4t} \sin 5t$

- b)  $e^{-4t} \sin 5t$  c)  $e^{4t} \cos 5t$  d)  $e^{-4t} \cos 5t$
- 13)  $L^{-1}\left\{\frac{1}{3s-1}\right\} =$ 
  - a) et

- b)  $\frac{e^{\frac{t}{3}}}{3}$  c)  $\frac{e^{t}}{3}$
- 14) If  $L\{f(t)\} = \Phi(s)$  then  $L\{f(at)\}$  is
- a)  $\Phi\left(\frac{s}{a}\right)$  b)  $\frac{1}{s}\Phi\left(\frac{s}{a}\right)$  c)  $\frac{1}{a}\Phi\left(\frac{s}{a}\right)$  d)  $\Phi'\left(\frac{s}{a}\right)$



Seat No.

# S.E. (Bio-Medical Engineering) (Part – I) (Old CGPA) Examination, 2018 ENGINEERING MATHEMATICS – III

Day and Date: Thursday, 3-5-2018 Marks: 56

Time: 2.30 p.m. to 5.30 p.m.

**Instructions**: 1) Figures to the **right** indicate **full** marks.

2) Assume suitable data whenever necessary.

SECTION - I

#### 2. Attempt any four:

 $(4 \times 4 = 16)$ 

- 1) Find the Laplace transform of e<sup>4t</sup> sin<sup>3</sup>t.
- 2) Find the Laplace transform of  $f(t) = t^2$ , 0 < t < 2, where f(t) is a periodic function with period 2.
- 3) Find the  $L^{-1} \left\{ \frac{1}{2} log \left( \frac{s^2 + 2^2}{s^2 + 3^2} \right) \right\}$ .
- 4) Find k such that  $\frac{1}{2}log(x^2 + y^2) + itan^{-1}\frac{kx}{y}$  is analytic.
- 5) Find the Laplace transform of  $e^{-4t} \int_0^t u \sin 3u du$ .

## 3. Attempt any two:

(6×2=12)

- 1) Solve using Laplace transform  $\frac{d^2y}{dt^2} + 4\frac{dy}{dt} + 8y = 1$ , where y(0) = 0, y'(0) = 1.
- 2) Find the orthogonal trajectories of the family of the curve  $3x^2y y^3 = c$ .
- 3) Find  $L^{-1}\left\{\frac{s^2}{\left(s^2+1\right)\left(s^2+4\right)}\right\}$  by convolution theorem.

# 

#### SECTION - II

4. Attempt any four:

 $(4 \times 4 = 16)$ 

- 1) Find the image of the circle  $(x-3)^2 + y^2 = 2$  under the transformation  $w = \frac{1}{z}$ .
- 2) Obtain Fourier series of  $f(x) = \begin{cases} \pi x & 0 \le x \le 1 \\ \pi(2-x) & 1 \le x \le 2 \end{cases}$  with period 2.
- 3) Find half range fourier sine series of f(x) = x(2 x) in 0 < x < 2.
- 4) Evaluate  $\int_0^{1+i} (x^2 iy) dz$ , along (i) the line y = x (ii) the parabola  $y = x^2$ .
- 5) Evaluate  $\oint_C \frac{z^2+z+1}{z-1} dz$ , where C is contour (i) z=1, (ii)  $|z|=\frac{1}{2}$ .
- 5. Attempt any two:

 $(6 \times 2 = 12)$ 

- 1) Find the half range sine series for  $f(x) = \begin{cases} \frac{1}{2} + x, & -\frac{1}{2} < x < 0 \\ \frac{1}{2} x, & 0 < x < \frac{1}{2} \end{cases}$ .
- 2) Find the Fourier series for  $f(x) = \frac{\pi x}{2}$  in the interval  $(0, 2\pi)$ . Also prove that

$$\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots$$

3) Find the bilinear transformation which maps the points z = 0, -i, -1 onto the points w = i, 1, 0.

| Seat |  |
|------|--|
| No.  |  |

Set S

# S.E. (Bio-Medical Engineering) (Part – I) (Old CGPA) Examination, 2018 ENGINEERING MATHEMATICS – III

Day and Date: Thursday, 3-5-2018

y, 3-5-2018 Max. Marks : 70

Time: 2.30 p.m. to 5.30 p.m.

Instructions: 1) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book Page No. 3. Each question carries one mark.

- 2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.
- 3) Figures to right indicate full marks.
- 4) Assume suitable data whenever necessary.

#### MCQ/Objective Type Questions

Duration: 30 Minutes Marks: 14

1. Choose the correct answer:

 $(14 \times 1 = 14)$ 

- 1) For the function  $f(x) = \begin{cases} -k, & -\pi < x < 0 \\ k, & 0 < x < \pi \end{cases}$  the value of  $a_0$  in Fourier expansion will be . . .
  - a) k

b) 2k

c) 0

- d) -k
- 2) In the mapping  $W = \frac{1}{z}$  the interior of the unit circle |z| = 1 is mapped onto
  - a) The interior of the unit circle
- b) The boundary of the unit circle

c) On the x-axis

- d) On the exterior of the unit circle
- 3) The value of integration,  $\int_{c} \frac{\sin z}{z} dz$ , C: |z| = 1 is
  - a) 0

b) πi

c)  $-\pi i$ 

d)  $-2\pi i$ 

- 4) If  $f(z) = \overline{z}$ , then f'(z)
  - a) equal to 1

b) equal to 0

c) does not exist

- d) equal to -1
- 5) In the mapping w = 4z, the region x = 0, y = 0, x + y = 1 is transformed into
  - a) a square

b) a circle

c) a triangle

d) none of these

-2-



6) L{t e<sup>-t</sup>} is

a) 
$$\frac{1}{(s+1)^2}$$

a) 
$$\frac{1}{(s+1)^2}$$
 b)  $-\frac{1}{(s+1)^2}$  c)  $\frac{s}{(s+1)^2}$  d)  $-\frac{s}{(s+1)^2}$ 

c) 
$$\frac{s}{(s+1)^2}$$

d) 
$$-\frac{s}{(s+1)^2}$$

- 7)  $L^{-1}\left\{\frac{s-4}{(s-4)^2+5^2}\right\}=$ 
  - a) e4t sin 5t

- b)  $e^{-4t} \sin 5t$  c)  $e^{4t} \cos 5t$  d)  $e^{-4t} \cos 5t$
- 8)  $L^{-1}\left\{\frac{1}{3s-1}\right\} =$ 
  - a) et

- b)  $\frac{e^{\frac{t}{3}}}{3}$  c)  $\frac{e^{t}}{3}$  d)  $\frac{e^{-\frac{t}{3}}}{3}$
- 9) If  $L\{f(t)\} = \Phi$  (s) then  $L\{f(at)\}$  is

  - a)  $\Phi\left(\frac{s}{a}\right)$  b)  $\frac{1}{s}\Phi\left(\frac{s}{a}\right)$  c)  $\frac{1}{a}\Phi\left(\frac{s}{a}\right)$  d)  $\Phi'\left(\frac{s}{a}\right)$
- 10) Cauchy-Riemann equations for f(z) to be analytic are
  - a)  $u_x = v_x$ ,  $u_y = -v_y$

b)  $u_x = v_y, u_y = -v_x$ 

c)  $u_{x} = -v_{x}$ ,  $u_{y} = v_{y}$ 

- d)  $u_{x} = -v_{y}, u_{y} = v_{x}$
- 11) A function  $\Phi(x, y)$  having continuous partial derivatives of the first and second order is called harmonic function if
  - a)  $\nabla \Phi = 0$

b)  $\nabla \Phi \neq 0$ 

c)  $\nabla^2 \Phi = 0$ 

- d)  $\nabla^2 \Phi \neq 0$
- 12) The mapping w = f(z) is conformal if
  - a) f(z) is analytic and f'(z) = 0
  - b) f(z) is analytic and  $f'(z) \neq 0$
  - c) f(z) is not analytic and  $f'(z) \neq 0$
  - d) None of these
- 13) Fourier expansion of an even function in the range  $(-\pi, \pi)$  has
  - a) Only sine terms
  - b) Only cosine terms
  - c) Both sine and cosine terms
  - d) None
- 14) If  $f(x) = x^4$  in (-1, 1), then the Fourier coefficient  $b_n$  is equal to

b) π

c) 0

d) None



Seat No.

# S.E. (Bio-Medical Engineering) (Part – I) (Old CGPA) Examination, 2018 ENGINEERING MATHEMATICS – III

Day and Date: Thursday, 3-5-2018 Marks: 56

Time: 2.30 p.m. to 5.30 p.m.

**Instructions**: 1) Figures to the **right** indicate **full** marks.

2) Assume suitable data whenever necessary.

SECTION - I

#### 2. Attempt any four:

 $(4 \times 4 = 16)$ 

- 1) Find the Laplace transform of e4t sin3t.
- 2) Find the Laplace transform of  $f(t) = t^2$ , 0 < t < 2, where f(t) is a periodic function with period 2.
- 3) Find the  $L^{-1} \left\{ \frac{1}{2} log \left( \frac{s^2 + 2^2}{s^2 + 3^2} \right) \right\}$ .
- 4) Find k such that  $\frac{1}{2}log(x^2 + y^2) + itan^{-1}\frac{kx}{y}$  is analytic.
- 5) Find the Laplace transform of  $e^{-4t} \int_0^t u \sin 3u du$ .

## 3. Attempt any two:

(6×2=12)

- 1) Solve using Laplace transform  $\frac{d^2y}{dt^2} + 4\frac{dy}{dt} + 8y = 1$ , where y(0) = 0, y'(0) = 1.
- 2) Find the orthogonal trajectories of the family of the curve  $3x^2y y^3 = c$ .
- 3) Find  $L^{-1}\left\{\frac{s^2}{\left(s^2+1\right)\left(s^2+4\right)}\right\}$  by convolution theorem.

# 

#### SECTION - II

4. Attempt any four:

 $(4 \times 4 = 16)$ 

- 1) Find the image of the circle  $(x-3)^2 + y^2 = 2$  under the transformation  $w = \frac{1}{z}$ .
- 2) Obtain Fourier series of  $f(x) = \begin{cases} \pi x & 0 \le x \le 1 \\ \pi(2-x) & 1 \le x \le 2 \end{cases}$  with period 2.
- 3) Find half range fourier sine series of f(x) = x(2 x) in 0 < x < 2.
- 4) Evaluate  $\int_0^{1+i} (x^2 iy) dz$ , along (i) the line y = x (ii) the parabola  $y = x^2$ .
- 5) Evaluate  $\oint_C \frac{z^2+z+1}{z-1} dz$ , where C is contour (i) z=1, (ii)  $|z|=\frac{1}{2}$ .
- 5. Attempt any two:

 $(6 \times 2 = 12)$ 

- 1) Find the half range sine series for  $f(x) = \begin{cases} \frac{1}{2} + x, & -\frac{1}{2} < x < 0 \\ \frac{1}{2} x, & 0 < x < \frac{1}{2} \end{cases}$ .
- 2) Find the Fourier series for  $f(x) = \frac{\pi x}{2}$  in the interval  $(0, 2\pi)$ . Also prove that

$$\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots$$

3) Find the bilinear transformation which maps the points z = 0, -i, -1 onto the points w = i, 1, 0.

| Seat | Cot | $\overline{}$ |
|------|-----|---------------|
| No.  | Set | ر             |

# S.E. (Biomedical Engg.) (Part – I) (Old CGPA) Examination, 2018 HUMAN ANATOMY AND PHYSIOLOGY

|         | ` HUI                                    | MAN ANATOMY                                                                   | AND PHYSIOLO                                                                                                                           | OGY                                                                           |                |
|---------|------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------|
| -       | nd Date : Friday, 4<br>2.30 p.m. to 5.30 |                                                                               |                                                                                                                                        | Max. Ma                                                                       | arks : 70      |
|         | 2)<br>3)<br>4)                           | Assume suitable Q. No. 1 is cor 30 minutes in A carries one mark Answer MCQ/O | tht indicate full man<br>e data wherever red<br>mpulsory. It shou<br>nswer Book Page<br>:<br>bjective type ques<br>et to mention, Q.P. | quired.<br>uld be solved ir<br>No. <b>3. Each</b> qu<br><b>stions on Page</b> | nestion  No. 3 |
| Duratio | on : 30 Minutes                          | MCQ/Objective                                                                 | Type Questions                                                                                                                         | Ma                                                                            | arks : 14      |
| 1. Ch   | oose the correct a                       | answer:                                                                       |                                                                                                                                        | (14                                                                           | 4×1=14)        |
| 1)      | The anatomical ra) Sternum               | name for the thigh<br>b) Femur                                                | n bone is<br>c) Clavicle                                                                                                               | d) Pelvis                                                                     |                |
| 2)      | Number of thoraca) 6                     | cic vertebrae in th<br>b) 8                                                   | ne human body are<br>c) 16                                                                                                             | d) 12                                                                         |                |
| 3)      | a) Pons c) Medulla                       | ture of nervous s                                                             | ystem detects char<br>b) Thermorecep<br>d) Pituitary Gla                                                                               | otors                                                                         | ıre.           |
| 4)      | a) Dophamine c) Acetylcholine            | cample of a neuro                                                             | otransmitter.<br>b) Norepinephr<br>d) All of the abo                                                                                   |                                                                               |                |
| 5)      | The dendrites not a) axon c) cell body   | rmally conduct in                                                             | npulses towards the<br>b) pituitary glan<br>d) synapse                                                                                 |                                                                               |                |
| 6)      | Veins are<br>a) Thin                     | walls that carry b) Thick                                                     | y deoxygenated blo<br>c) Rigid                                                                                                         |                                                                               |                |

7) The bone that protects the \_\_\_\_\_ is called the cranium.

c) Clavicle

a) Sternum b) Brain

d) Pelvis

| 8)  | The thoracic cage is a structural unifunctions? | t important for whi   | ch of the following |
|-----|-------------------------------------------------|-----------------------|---------------------|
|     | a) Alimentation                                 | b) Menstruation       |                     |
|     | c) Mentation                                    | d) Respiration        |                     |
| 9)  | allows gas exchange in the                      | lungs.                |                     |
|     | a) Alveoli b) Bronchi                           | c) Bronchioles        | d) Capillaries      |
| 10) | structures are part of the sr                   | mall intestine.       |                     |
|     | a) Ascending colon                              | b) Cecum              |                     |
|     | c) Ileum                                        | d) Sigmoid colon      |                     |
| 11) | hormone does the pancrea                        | tic alpha cell secre  | te.                 |
|     | a) Insulin                                      | b) Somatostatin       |                     |
|     | c) Glucagon                                     | d) Somatotropin       |                     |
| 12) | The serves as the source of                     | of the flagellum in s | perm.               |
|     | a) Nucleus                                      | b) Cilia              |                     |
|     | c) Cell membrane                                | d) Centriole          |                     |
| 13) | contains an enzyme that ac                      | cts upon starches o   | f the nutrients.    |
|     | a) saliva b) proteins                           | c) fats               | d) minerals         |
| 14) | Brain has ventricles.                           |                       |                     |
| ,   | a) 2 b) 3                                       | c) 4                  | d) 5                |
|     |                                                 | -                     |                     |



| Seat |  |
|------|--|
| No.  |  |

# S.E. (Biomedical Engg.) (Part – I) (Old CGPA) Examination, 2018 HUMAN ANATOMY AND PHYSIOLOGY

Day and Date: Friday, 4-5-2018 Marks: 56

Time: 2.30 p.m. to 5.30 p.m.

**Instructions**: 1) Figures to the **right** indicate **full** marks.

2) Assume suitable data wherever required.

#### SECTION - I

#### 2. Attempt any four:

 $(4 \times 4 = 16)$ 

- 1) Explain structure and functioning of heart walls.
- 2) List types and explain role of heart valves with necessary figure.
- 3) Explain various leads and their configurations in ECG measurement.
- 4) Draw respiratory system and indicate all naming.
- 5) List various secretions by alimentary system and mention each of significance.

### 3. Attempt any 2:

 $(6 \times 2 = 12)$ 

- 1) Draw and explain pulmonary circulation system in detail.
- 2) Define heart rate, pulse rate, cardiac output and stroke volume.
- 3) List all organs of digestive system and explain structure and functions of any 2.

#### SECTION - II

### 4. Attempt any four:

- 1) Draw microscopic structure of nephron and list its components.
- 2) Draw and explain structure of ear.



- 3) Draw and explain the process of impulse transmission in nervous system.
- 4) Define and differentiate endocrine and exocrine glands with each one example.
- 5) Explain generation of nerve conduction and action potential of nervous system.

#### 5. Attempt any two:

 $(6 \times 2 = 12)$ 

- 1) Explain the process of urine formation with neat figures.
- 2) Differentiate between male and female reproductive system in detail.
- 3) Draw and explain the structure of eye and process of forming image on the retina.

Set P

|--|--|

| Seat | 0-4 |   |
|------|-----|---|
| No.  | Set | Q |

| ,                                                                                                         | I) (Old CGPA) Examination, 2018  'AND PHYSIOLOGY                                                                                  |
|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| Day and Date : Friday, 4-5-2018<br>Time : 2.30 p.m. to 5.30 p.m.                                          | Max. Marks: 70                                                                                                                    |
| 3) Q. No. <b>1</b> is <b>con 30 minutes</b> in Al<br>carries <b>one</b> mark.<br>4) <b>Answer MCQ/O</b> b | data <b>wherever</b> required.  npulsory. It should be solved in <b>first</b> nswer Book Page No. <b>3</b> . <b>Each</b> question |
| MCQ/Objective Duration: 30 Minutes                                                                        | Type Questions  Marks: 14                                                                                                         |
| Duration : 30 ivillutes                                                                                   | Marks . 14                                                                                                                        |
| Choose the correct answer:                                                                                | (14×1=14)                                                                                                                         |
| ,                                                                                                         | unit important for which of the following                                                                                         |
| functions ?<br>a) Alimentation                                                                            | b) Menstruation                                                                                                                   |
| c) Mentation                                                                                              | d) Respiration                                                                                                                    |
| 2) allows gas exchange in tl                                                                              | he lungs.                                                                                                                         |
| a) Alveoli b) Bronchi                                                                                     | c) Bronchioles d) Capillaries                                                                                                     |
| 3) structures are part of the                                                                             |                                                                                                                                   |
| a) Ascending colon                                                                                        | <ul><li>b) Cecum</li><li>d) Sigmoid colon</li></ul>                                                                               |
| <ul><li>c) Ileum</li><li>4) hormone does the pancre</li></ul>                                             | ,                                                                                                                                 |
| a) Insulin                                                                                                |                                                                                                                                   |
| c) Glucagon                                                                                               | d) Somatotropin                                                                                                                   |
| 5) The serves as the source                                                                               | e of the flagellum in sperm.                                                                                                      |
| a) Nucleus                                                                                                | b) Cilia                                                                                                                          |
| c) Cell membrane                                                                                          | d) Centriole                                                                                                                      |
| 6) contains an enzyme that                                                                                |                                                                                                                                   |

c) 4

7) Brain has \_\_\_\_\_ ventricles.

a) 2

b) 3

d) 5

| 8)  | The anatomical na   | me for the thigh be | one is              |                    |
|-----|---------------------|---------------------|---------------------|--------------------|
|     | a) Sternum          | b) Femur            | c) Clavicle         | d) Pelvis          |
| 9)  | Number of thoracio  | vertebrae in the l  | numan body are      |                    |
|     | a) 6                | b) 8                | c) 16               | d) 12              |
| 10) | structu             | re of nervous syst  | em detects change   | es in temperature. |
|     | a) Pons             |                     | b) Thermorecepto    | ors                |
|     | c) Medulla          |                     | d) Pituitary Gland  |                    |
| 11) | is an exa           | mple of a neurotra  | ınsmitter.          |                    |
|     | a) Dophamine        |                     | b) Norepinephrine   | 9                  |
|     | c) Acetylcholine    |                     | d) All of the above | Э                  |
| 12) | The dendrites norn  | nally conduct impu  | ulses towards the   |                    |
|     | a) axon             |                     | b) pituitary gland  |                    |
|     | c) cell body        |                     | d) synapse          |                    |
| 13) | Veins are           | walls that carry d  | eoxygenated blood   | d towards heart.   |
|     | a) Thin             | b) Thick            | c) Rigid            | d) Transparent     |
| 14) | The bone that prote | ects the is         | called the cranium  | n.                 |
|     | a) Sternum          | b) Brain            | c) Clavicle         | d) Pelvis          |
|     |                     |                     |                     |                    |



| Seat |  |
|------|--|
| No.  |  |

# S.E. (Biomedical Engg.) (Part – I) (Old CGPA) Examination, 2018 HUMAN ANATOMY AND PHYSIOLOGY

Day and Date: Friday, 4-5-2018 Marks: 56

Time: 2.30 p.m. to 5.30 p.m.

**Instructions**: 1) Figures to the **right** indicate **full** marks.

2) Assume suitable data wherever required.

#### SECTION - I

#### 2. Attempt any four:

 $(4 \times 4 = 16)$ 

- 1) Explain structure and functioning of heart walls.
- 2) List types and explain role of heart valves with necessary figure.
- 3) Explain various leads and their configurations in ECG measurement.
- 4) Draw respiratory system and indicate all naming.
- 5) List various secretions by alimentary system and mention each of significance.

## 3. Attempt any 2:

 $(6 \times 2 = 12)$ 

- 1) Draw and explain pulmonary circulation system in detail.
- 2) Define heart rate, pulse rate, cardiac output and stroke volume.
- 3) List all organs of digestive system and explain structure and functions of any 2.

#### SECTION - II

### 4. Attempt any four:

- 1) Draw microscopic structure of nephron and list its components.
- 2) Draw and explain structure of ear.



- 3) Draw and explain the process of impulse transmission in nervous system.
- 4) Define and differentiate endocrine and exocrine glands with each one example.
- 5) Explain generation of nerve conduction and action potential of nervous system.

#### 5. Attempt any two:

 $(6 \times 2 = 12)$ 

- 1) Explain the process of urine formation with neat figures.
- 2) Differentiate between male and female reproductive system in detail.
- 3) Draw and explain the structure of eye and process of forming image on the retina.

Set Q

| Seat | Cod |   |
|------|-----|---|
| No.  | Set | K |

# S.E. (Biomedical Engg.) (Part – I) (Old CGPA) Examination, 2018 HUMAN ANATOMY AND PHYSIOLOGY

| Day and Date : Friday, 4-5-2018 | Max. Marks: 70 |
|---------------------------------|----------------|
| T: 0.00 L E.00                  |                |

Time: 2.30 p.m. to 5.30 p.m.

- **Instructions**: 1) Figures to the **right** indicate **full** marks.
  - 2) Assume suitable data wherever required.
  - 3) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book Page No. 3. Each question carries one mark.
  - 4) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

|         |                                                           | MCQ/Objective       | Type Questions                                           |                        |
|---------|-----------------------------------------------------------|---------------------|----------------------------------------------------------|------------------------|
| Duratio | on: 30 Minutes                                            | -                   |                                                          | Marks: 14              |
| 1. Ch   | oose the correct ar                                       | nswer:              |                                                          | (14×1=14)              |
| 1)      | The dendrites nor a) axon c) cell body                    | mally conduct imp   | pulses towards the<br>b) pituitary glar<br>d) synapse    |                        |
| 2)      | Veins are<br>a) Thin<br>c) Rigid                          | _ walls that carry  | deoxygenated blo<br>b) Thick<br>d) Transparent           |                        |
| 3)      | The bone that pro a) Sternum                              |                     |                                                          |                        |
| 4)      | The thoracic cage functions? a) Alimentation c) Mentation | e is a structural u | nit important for v<br>b) Menstruation<br>d) Respiration | which of the following |
| 5)      | a) Alveoli c) Bronchioles                                 | as exchange in th   | ne lungs.<br>b) Bronchi<br>d) Capillaries                |                        |
| 6)      | a) Ascending cold c) Ileum                                |                     | small intestine. b) Cecum d) Sigmoid cold                | on                     |

b) Norepinephrine

d) All of the above

a) Dophamine

c) Acetylcholine



| Seat |  |
|------|--|
| No.  |  |

# S.E. (Biomedical Engg.) (Part – I) (Old CGPA) Examination, 2018 HUMAN ANATOMY AND PHYSIOLOGY

Day and Date: Friday, 4-5-2018 Marks: 56

Time: 2.30 p.m. to 5.30 p.m.

**Instructions**: 1) Figures to the **right** indicate **full** marks.

2) Assume suitable data wherever required.

#### SECTION - I

#### 2. Attempt any four:

 $(4 \times 4 = 16)$ 

- 1) Explain structure and functioning of heart walls.
- 2) List types and explain role of heart valves with necessary figure.
- 3) Explain various leads and their configurations in ECG measurement.
- 4) Draw respiratory system and indicate all naming.
- 5) List various secretions by alimentary system and mention each of significance.

### 3. Attempt any 2:

 $(6 \times 2 = 12)$ 

- 1) Draw and explain pulmonary circulation system in detail.
- 2) Define heart rate, pulse rate, cardiac output and stroke volume.
- 3) List all organs of digestive system and explain structure and functions of any 2.

#### SECTION - II

### 4. Attempt any four:

- 1) Draw microscopic structure of nephron and list its components.
- 2) Draw and explain structure of ear.



- 3) Draw and explain the process of impulse transmission in nervous system.
- 4) Define and differentiate endocrine and exocrine glands with each one example.
- 5) Explain generation of nerve conduction and action potential of nervous system.

#### 5. Attempt any two:

 $(6 \times 2 = 12)$ 

- 1) Explain the process of urine formation with neat figures.
- 2) Differentiate between male and female reproductive system in detail.
- 3) Draw and explain the structure of eye and process of forming image on the retina.

Set R

| Seat |  |
|------|--|
| No.  |  |

### S.E. (Biomedical Engg.) (Part – I) (Old CGPA) Examination, 2018 **HUMAN ANATOMY AND PHYSIOLOGY**

Day and Date: Friday, 4-5-2018 Max. Marks: 70 Time: 2.30 p.m. to 5.30 p.m.

**Instructions**: 1) Figures to the **right** indicate **full** marks.

- 2) Assume suitable data wherever required.
- 3) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book Page No. 3. Each question carries one mark.
- 4) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

|         |                                        | MCQ/Objective             | Type Questions                                    |           |
|---------|----------------------------------------|---------------------------|---------------------------------------------------|-----------|
| Duratio | n : 30 Minutes                         |                           |                                                   | Marks: 14 |
| 1. Ch   | oose the correct a                     | nswer :                   |                                                   | (14×1=14) |
| 1)      | a) Ascending cold c) Ileum             | •                         |                                                   | on        |
| 2)      | a) Insulin c) Glucagon                 | e does the pancr          | •                                                 | n         |
| 3)      | The serval a) Nucleus c) Cell membrane |                           | e of the flagellum in<br>b) Cilia<br>d) Centriole | n sperm.  |
| 4)      | a) saliva                              | -                         | acts upon starche c) fats                         |           |
| 5)      | Brain hasa) 2                          | ventricles.<br>b) 3       | c) 4                                              | d) 5      |
| 6)      | The anatomical na                      | ame for the thigh         |                                                   | d) Pelvis |
| 7)      | Number of thoraci                      | c vertebrae in th<br>b) 8 | •                                                 | d) 12     |

c) Bronchioles d) Capillaries

14) \_\_\_\_\_ allows gas exchange in the lungs.

a) Alveoli b) Bronchi



| Seat |  |
|------|--|
| No.  |  |

# S.E. (Biomedical Engg.) (Part – I) (Old CGPA) Examination, 2018 HUMAN ANATOMY AND PHYSIOLOGY

Day and Date: Friday, 4-5-2018 Marks: 56

Time: 2.30 p.m. to 5.30 p.m.

**Instructions**: 1) Figures to the **right** indicate **full** marks.

2) Assume suitable data wherever required.

#### SECTION - I

#### 2. Attempt any four:

 $(4 \times 4 = 16)$ 

- 1) Explain structure and functioning of heart walls.
- 2) List types and explain role of heart valves with necessary figure.
- 3) Explain various leads and their configurations in ECG measurement.
- 4) Draw respiratory system and indicate all naming.
- 5) List various secretions by alimentary system and mention each of significance.

### 3. Attempt any 2:

 $(6 \times 2 = 12)$ 

- 1) Draw and explain pulmonary circulation system in detail.
- 2) Define heart rate, pulse rate, cardiac output and stroke volume.
- 3) List all organs of digestive system and explain structure and functions of any 2.

#### SECTION - II

### 4. Attempt any four:

- 1) Draw microscopic structure of nephron and list its components.
- 2) Draw and explain structure of ear.



- 3) Draw and explain the process of impulse transmission in nervous system.
- 4) Define and differentiate endocrine and exocrine glands with each one example.
- 5) Explain generation of nerve conduction and action potential of nervous system.

#### 5. Attempt any two:

 $(6 \times 2 = 12)$ 

- 1) Explain the process of urine formation with neat figures.
- 2) Differentiate between male and female reproductive system in detail.
- 3) Draw and explain the structure of eye and process of forming image on the retina.

Set S

| <br> | <br> |
|------|------|

| Seat |  |
|------|--|
| No.  |  |

Set P

# S.E. (Biomedical Engg.) (Part – I) (Old CGPA) Examination, 2018 BIOMATERIALS

Day and Date: Saturday, 5-5-2018 Total Marks: 70

Time: 2.30 p.m. to 5.30 p.m.

- Instructions: 1) Q. No. 1 is compulsory. It should be solved in first
  30 minutes in Answer Book Page No. 3. Each question
  carries one mark.
  - 2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.
  - 3) Figures to the **right** indicate **full** marks.
  - 4) Assume suitable data wherever required.

|     |      |                         | MCQ/Objectiv                               | e Type Questio    | าร                       |
|-----|------|-------------------------|--------------------------------------------|-------------------|--------------------------|
| Dur | atio | n : 30 Minutes          |                                            |                   | Marks : 14               |
| 1.  | Ch   | noose the correc        | t answer :                                 |                   | (14×1=14)                |
|     | 1)   | Biosensors are          | used in                                    |                   |                          |
|     |      | a) medical field        |                                            | b) agricultui     | ral field                |
|     |      | c) pollution mo         | nitoring                                   | d) all of the     | above                    |
|     | 2)   | Restorative bior of the | naterials are desig                        | ned to recover th | e shape and the function |
|     |      | a) teeth                | b) bone                                    | c) tissue         | d) none of above         |
|     | 3)   | are pattern to the sp   |                                            | (3D) networks of  | atoms having no regular  |
|     |      | a) Glasses              | b) Fiber                                   | c) Metal          | d) Polymer               |
|     | 4)   | Polycrystalline of      | ceramics have no                           | compo             | nents.                   |
|     |      | a) glassy               | b) liquid                                  | c) solid          | d) crystal               |
|     | 5)   |                         | the ability of a ma<br>pecific application |                   | with an appropriate host |
|     |      | a) Reduction            |                                            | b) Biocomp        | atibility                |
|     |      | c) Oxidation            |                                            | d) None of a      | above                    |



| 6)   | Elastic deformation in                | n polymers is du  | e to | )                |                     |
|------|---------------------------------------|-------------------|------|------------------|---------------------|
|      | a) Slight adjust of molecular chains  |                   |      |                  |                     |
|      | b) Slippage of molecular chains       |                   |      |                  |                     |
|      | c) Straightening of m                 | nolecular chains  |      |                  |                     |
|      | d) Severe of covaler                  | nt bonds          |      |                  |                     |
| 7)   | One of characteristic                 | properties of po  | lyn  | ner material     |                     |
|      | a) High temperature                   | stability         | b)   | High mechani     | ical strength       |
|      | c) High elongation                    |                   | d)   | Low hardness     | 3                   |
| 8)   | Polymers are                          | in nature.        |      |                  |                     |
|      | a) organic                            | b) inorganic      | c)   | both a and b     | d) none             |
| 9)   | polymers ca                           | annot be recycle  | d.   |                  |                     |
|      | a) Thermoplasts                       | b) Thermosets     | c)   | Elastomers       | d) All polymers     |
| 10)  | types of bid                          | omaterials are us | ed   | as bridges betv  | veen human tissues  |
|      | and metals.                           |                   |      |                  |                     |
|      | a) Polymeric I                        | b) Ceramic        | c)   | Metallic         | d) All of these     |
| 11)  | Which of the followin                 | g statements is t | true | ?                |                     |
|      | a) Ceramic materials                  | s have low meltir | ng p | point            |                     |
|      | b) Porcelain is used                  | as insulating ma  | ater | ial in spark plu | gs                  |
|      | c) Graphite is viscoe                 | lastic in nature  |      |                  |                     |
|      | d) Compacting iron of                 | oxide powder ce   | ram  | nic tools are pr | epared              |
| 12)  | materials                             | s can be used to  | ma   | nufacture elas   | tomers.             |
|      | a) Limestone                          | b) Petroleum      | c)   | Alcohol          | d) All of the above |
| 13)  | Malleability means                    |                   |      |                  |                     |
|      | a) Metals undergo p                   |                   | n u  | nder compres     | sive stresses       |
|      | b) Metals can be dra                  | wn into wires     |      |                  |                     |
|      | c) Both a and b                       | 2                 |      |                  |                     |
| 4.4\ | d) None of the above                  | <del>J</del>      |      |                  |                     |
| 14)  | Ductility means  a) Metals can be dra | wn into sheets    |      |                  |                     |
|      | b) Metals undergo e                   |                   | n II | nder tensile lo  | ads                 |
|      | c) Metals undergo p                   |                   |      |                  |                     |
|      | d) All of the above                   |                   | ,    |                  |                     |
|      |                                       |                   |      |                  |                     |



| Seat |  |
|------|--|
| No.  |  |

# S.E. (Biomedical Engg.) (Part – I) (Old CGPA) Examination, 2018 BIOMATERIALS

Day and Date: Saturday, 5-5-2018

Marks: 56

Time: 2.30 p.m. to 5.30 p.m.

Instructions: 1) Figures to the right indicate full marks.2) Assume suitable data wherever required.

#### SECTION - I

#### 2. Attempt any four:

 $(4 \times 4 = 16)$ 

- 1) Classify biomaterial in detail.
- 2) Explain applications of stainless steel.
- 3) Explain applications of PTFE.
- 4) Explain classification of bioceramics and mention its any 2 applications.
- 5) What are bioglasses? Mention its any 2 applications.

### 3. Attempt any 2:

 $(6 \times 2 = 12)$ 

- 1) Explain biocompatibility test performed on Cobalt based alloy.
- 2) Explain various applications of composite biomaterials.
- 3) Write a short note on (structure, applications):
  - a) Silicon rubber
  - b) Carbon implants

#### SECTION - II

### 4. Attempt any four:

- 1) Explain which material is suited as bone cement? Mention its specifications.
- 2) Explain materials can be protected from corrosion.



- 3) Which materials are used for soft tissue replacement? Discuss their properties.
- 4) Define thermoplastic and thermosetting resins. Mention its any two applications.
- 5) Discuss the properties and types of materials used in breast implants.

5. Attempt any 2:

 $(6 \times 2 = 12)$ 

- 1) Explain how surface properties of biomaterials are tested.
- 2) Write a short note on (structure and applications):
  - a) Wood and leathers
  - b) Alumina and zirconia.
- 3) Explain any 2 methods of biological testing of biomaterials in short.

| SLR-TC - 436 |
|--------------|
| SLR-1C - 430 |

| Seat No. Set | 01   |     |        |
|--------------|------|-----|--------|
| No. Set      | Seat |     | _      |
| NO.   SEL    | NIa  | Sat | $\cap$ |
|              | NO.  | Set | U      |

# S.E. (Biomedical Engg.) (Part – I) (Old CGPA) Examination, 2018 BIOMATERIALS

Day and Date: Saturday, 5-5-2018 Total Marks: 70

Time: 2.30 p.m. to 5.30 p.m.

- Instructions: 1) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book Page No. 3. Each question carries one mark.
  - 2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.
  - 3) Figures to the right indicate full marks.
  - 4) Assume suitable data wherever required.

## **MCQ/Objective Type Questions**

| Dur | atio | n : 30 Minutes       |                     |                      | Marks: 14           |
|-----|------|----------------------|---------------------|----------------------|---------------------|
| 1.  | Ch   | noose the correct ar | iswer:              |                      | (14×1=14)           |
|     | 1)   | Polymers are         | in nature.          |                      |                     |
|     |      | a) organic           | b) inorganic        | c) both a and b      | d) none             |
|     | 2)   | polymers             | cannot be recycle   | ed.                  |                     |
|     |      | a) Thermoplasts      | b) Thermosets       | c) Elastomers        | d) All polymers     |
|     | 3)   | types of and metals. | biomaterials are us | sed as bridges bet   | ween human tissues  |
|     |      | a) Polymeric         | b) Ceramic          | c) Metallic          | d) All of these     |
|     | 4)   | Which of the follow  | ring statements is  | true ?               |                     |
|     |      | a) Ceramic materia   | als have low melti  | ng point             |                     |
|     |      | b) Porcelain is use  | ed as insulating ma | aterial in spark plu | ugs                 |
|     |      | c) Graphite is visc  | oelastic in nature  |                      |                     |
|     |      | d) Compacting iron   | n oxide powder ce   | eramic tools are p   | repared             |
|     | 5)   | materia              | als can be used to  | manufacture ela      | stomers.            |
|     |      | a) Limestone         | b) Petroleum        | c) Alcohol           | d) All of the above |

| 6)  | <ul><li>Malleability means</li><li>a) Metals undergo plastic deforma</li><li>b) Metals can be drawn into wires</li><li>c) Both a and b</li><li>d) None of the above</li></ul>                    |          | nder compre    | essive | e stresses        |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------|--------|-------------------|
| 7)  | Ductility means <ul> <li>a) Metals can be drawn into sheet</li> <li>b) Metals undergo elastic deformation</li> <li>c) Metals undergo plastic deformation</li> <li>d) All of the above</li> </ul> | ation u  |                |        |                   |
| 8)  | Biosensors are used in                                                                                                                                                                           |          |                |        |                   |
|     | a) medical field                                                                                                                                                                                 | b)       | agricultural   | field  |                   |
|     | c) pollution monitoring                                                                                                                                                                          | d)       | all of the ab  | ove    |                   |
| 9)  | Restorative biomaterials are design of the                                                                                                                                                       | ned to   | recover the s  | hape   | and the function  |
|     | a) teeth b) bone                                                                                                                                                                                 | c)       | tissue         | d)     | none of above     |
| 10) | are three-dimensional (a pattern to the spacing.                                                                                                                                                 | (3D) ne  | etworks of ato | oms h  | naving no regular |
|     | a) Glasses b) Fiber                                                                                                                                                                              | c)       | Metal          | d)     | Polymer           |
| 11) | Polycrystalline ceramics have no _                                                                                                                                                               |          | componer       | nts.   |                   |
|     | a) glassy b) liquid                                                                                                                                                                              | c)       | solid          | d)     | crystal           |
| 12) | is the ability of a mater response in a specific application.                                                                                                                                    | erial to | perform with   | n an   | appropriate host  |
|     | a) Reduction                                                                                                                                                                                     | b)       | Biocompatib    | oility |                   |
|     | c) Oxidation                                                                                                                                                                                     | d)       | None of abo    | ve     |                   |
| 13) | Elastic deformation in polymers is                                                                                                                                                               |          | )              |        |                   |
|     | a) Slight adjust of molecular chain                                                                                                                                                              | IS       |                |        |                   |
|     | b) Slippage of molecular chains                                                                                                                                                                  |          |                |        |                   |
|     | c) Straightening of molecular chair                                                                                                                                                              | ns       |                |        |                   |
|     | d) Severe of covalent bonds                                                                                                                                                                      |          |                |        |                   |
| 14) | One of characteristic properties of                                                                                                                                                              |          |                |        |                   |
|     | a) High temperature stability                                                                                                                                                                    | -        | High mecha     |        | strength          |
|     | c) High elongation                                                                                                                                                                               | d)       | Low hardne     | SS     |                   |



| Seat |  |
|------|--|
| No.  |  |

# S.E. (Biomedical Engg.) (Part – I) (Old CGPA) Examination, 2018 BIOMATERIALS

Day and Date: Saturday, 5-5-2018

Marks: 56

Time: 2.30 p.m. to 5.30 p.m.

Instructions: 1) Figures to the right indicate full marks.2) Assume suitable data wherever required.

#### SECTION - I

#### 2. Attempt any four:

 $(4 \times 4 = 16)$ 

- 1) Classify biomaterial in detail.
- 2) Explain applications of stainless steel.
- 3) Explain applications of PTFE.
- 4) Explain classification of bioceramics and mention its any 2 applications.
- 5) What are bioglasses? Mention its any 2 applications.

### 3. Attempt any 2:

 $(6 \times 2 = 12)$ 

- 1) Explain biocompatibility test performed on Cobalt based alloy.
- 2) Explain various applications of composite biomaterials.
- 3) Write a short note on (structure, applications):
  - a) Silicon rubber
  - b) Carbon implants

#### SECTION - II

### 4. Attempt any four:

- 1) Explain which material is suited as bone cement? Mention its specifications.
- 2) Explain materials can be protected from corrosion.



- 3) Which materials are used for soft tissue replacement? Discuss their properties.
- 4) Define thermoplastic and thermosetting resins. Mention its any two applications.
- 5) Discuss the properties and types of materials used in breast implants.

5. Attempt any 2:

 $(6 \times 2 = 12)$ 

- 1) Explain how surface properties of biomaterials are tested.
- 2) Write a short note on (structure and applications):
  - a) Wood and leathers
  - b) Alumina and zirconia.
- 3) Explain any 2 methods of biological testing of biomaterials in short.

|  | <b>LR-TC - 43</b> |
|--|-------------------|
|--|-------------------|

| Seat |  |
|------|--|
| No.  |  |

Set



# S.E. (Biomedical Engg.) (Part – I) (Old CGPA) Examination, 2018 BIOMATERIALS

Day and Date: Saturday, 5-5-2018 Total Marks: 70

Time: 2.30 p.m. to 5.30 p.m.

- Instructions: 1) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book Page No. 3. Each question carries one mark.
  - 2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.
  - 3) Figures to the **right** indicate **full** marks.
  - 4) Assume suitable data wherever required.

### MCQ/Objective Type Questions

| Dur | atio                                                                                                                                                                                                                                     | n : 30 Minutes                                                  |                   |       |               |     |            | Marks : 14 |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|-------------------|-------|---------------|-----|------------|------------|
| 1.  | Ch                                                                                                                                                                                                                                       | noose the correct an                                            | swer:             |       |               |     |            | (14×1=14)  |
|     | 1)                                                                                                                                                                                                                                       | is the response in a spec                                       |                   | al to | perform with  | an  | appropriat | te host    |
|     |                                                                                                                                                                                                                                          | a) Reduction                                                    |                   | b)    | Biocompatibil | ity |            |            |
|     |                                                                                                                                                                                                                                          | c) Oxidation                                                    |                   | d)    | None of abov  | е   |            |            |
|     | <ul> <li>2) Elastic deformation in polymers is dual</li> <li>a) Slight adjust of molecular chains</li> <li>b) Slippage of molecular chains</li> <li>c) Straightening of molecular chains</li> <li>d) Severe of covalent bonds</li> </ul> |                                                                 |                   |       | )             |     |            |            |
|     | 3)                                                                                                                                                                                                                                       | One of characterist<br>a) High temperatur<br>c) High elongation | re stability      | b)    |               |     | strength   |            |
|     | 4)                                                                                                                                                                                                                                       | Polymers are                                                    | in nature.        | ·     |               |     |            |            |
|     |                                                                                                                                                                                                                                          | a) organic                                                      | b) inorganic      | c)    | both a and b  | d)  | none       |            |
|     | 5)                                                                                                                                                                                                                                       | polymers                                                        | cannot be recycle | d.    |               |     |            |            |
|     |                                                                                                                                                                                                                                          | a) Thermoplasts                                                 | b) Thermosets     | c)    | Elastomers    | d)  | All polym  | ers        |

| 6)  | types of biomaterials are used as bridges between human tissues and metals.                                                                      |                                                                                 |                                                                                |                                                                          |  |  |  |  |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------|--|--|--|--|
|     | and metals. a) Polymeric                                                                                                                         | h) Coramic                                                                      | o) Motallic                                                                    | d) All of those                                                          |  |  |  |  |
| 7)  |                                                                                                                                                  | •                                                                               | •                                                                              | u) All of these                                                          |  |  |  |  |
| 7)  | Which of the following statements is true?                                                                                                       |                                                                                 |                                                                                |                                                                          |  |  |  |  |
|     | a) Ceramic materials have low melting point                                                                                                      |                                                                                 |                                                                                |                                                                          |  |  |  |  |
|     | b) Porcelain is used as insulating material in spark plugs                                                                                       |                                                                                 |                                                                                |                                                                          |  |  |  |  |
|     | c) Graphite is visc                                                                                                                              |                                                                                 |                                                                                |                                                                          |  |  |  |  |
|     | d) Compacting iro                                                                                                                                | n oxide powder ce                                                               | eramic tools are p                                                             | repared                                                                  |  |  |  |  |
| 8)  |                                                                                                                                                  | als can be used to                                                              |                                                                                |                                                                          |  |  |  |  |
|     | a) Limestone                                                                                                                                     | b) Petroleum                                                                    | c) Alcohol                                                                     | d) All of the above                                                      |  |  |  |  |
| 9)  | Malleability means                                                                                                                               |                                                                                 |                                                                                |                                                                          |  |  |  |  |
|     | a) Metals undergo                                                                                                                                | •                                                                               | on under compres                                                               | ssive stresses                                                           |  |  |  |  |
|     | b) Metals can be o                                                                                                                               | drawn into wires                                                                |                                                                                |                                                                          |  |  |  |  |
|     | c) Both a and b                                                                                                                                  | _                                                                               |                                                                                |                                                                          |  |  |  |  |
|     | d) None of the abo                                                                                                                               | ove                                                                             |                                                                                |                                                                          |  |  |  |  |
| 10) | Ductility means                                                                                                                                  |                                                                                 |                                                                                |                                                                          |  |  |  |  |
|     | a) Metals can be o                                                                                                                               |                                                                                 |                                                                                |                                                                          |  |  |  |  |
|     | b) Metals undergo                                                                                                                                |                                                                                 |                                                                                |                                                                          |  |  |  |  |
|     | c) Metals undergo plastic deformation under tensile loads                                                                                        |                                                                                 |                                                                                |                                                                          |  |  |  |  |
|     | -                                                                                                                                                |                                                                                 |                                                                                |                                                                          |  |  |  |  |
| 44\ | d) All of the above                                                                                                                              |                                                                                 |                                                                                |                                                                          |  |  |  |  |
| 11) | d) All of the above<br>Biosensors are use                                                                                                        |                                                                                 | b) agricultural fi                                                             | old                                                                      |  |  |  |  |
| 11) | d) All of the above<br>Biosensors are use<br>a) medical field                                                                                    | ed in                                                                           | b) agricultural fi                                                             |                                                                          |  |  |  |  |
| ,   | <ul><li>d) All of the above</li><li>Biosensors are use</li><li>a) medical field</li><li>c) pollution monito</li></ul>                            | ed in<br>oring                                                                  | d) all of the abo                                                              | ve                                                                       |  |  |  |  |
| ,   | <ul><li>d) All of the above</li><li>Biosensors are use</li><li>a) medical field</li><li>c) pollution monito</li></ul>                            | ed in<br>oring                                                                  | d) all of the abo                                                              |                                                                          |  |  |  |  |
| ,   | <ul><li>d) All of the above</li><li>Biosensors are use</li><li>a) medical field</li><li>c) pollution monito</li><li>Restorative biomat</li></ul> | ed in<br>oring<br>erials are designed                                           | d) all of the abo                                                              | ve                                                                       |  |  |  |  |
| ,   | d) All of the above Biosensors are use a) medical field c) pollution monito Restorative biomat of the a) teeth                                   | ed in<br>oring<br>erials are designed<br>b) bone                                | d) all of the abo<br>d to recover the sh<br>c) tissue                          | ve<br>ape and the function                                               |  |  |  |  |
| 12) | d) All of the above Biosensors are use a) medical field c) pollution monito Restorative biomat of the a) teeth                                   | ed in  oring  erials are designed  b) bone  ee-dimensional (3E                  | d) all of the abo<br>d to recover the sh<br>c) tissue                          | ve ape and the function d) none of above                                 |  |  |  |  |
| 12) | d) All of the above Biosensors are use a) medical field c) pollution monito Restorative biomat of the a) teeth are three                         | ed in  oring  erials are designed  b) bone  ee-dimensional (3E                  | d) all of the abo<br>d to recover the sh<br>c) tissue                          | ve ape and the function d) none of above ns having no regular            |  |  |  |  |
| 12) | d) All of the above Biosensors are use a) medical field c) pollution monito Restorative biomat of the a) teeth are thre pattern to the space     | ed in  oring  erials are designed  b) bone  ee-dimensional (3E  sing.  b) Fiber | d) all of the about to recover the shot c) tissue D) networks of ator c) Metal | ve ape and the function d) none of above ns having no regular d) Polymer |  |  |  |  |



| Seat |  |
|------|--|
| No.  |  |

# S.E. (Biomedical Engg.) (Part – I) (Old CGPA) Examination, 2018 BIOMATERIALS

Day and Date: Saturday, 5-5-2018

Marks: 56

Time: 2.30 p.m. to 5.30 p.m.

Instructions: 1) Figures to the right indicate full marks.2) Assume suitable data wherever required.

#### SECTION - I

#### 2. Attempt any four:

 $(4 \times 4 = 16)$ 

- 1) Classify biomaterial in detail.
- 2) Explain applications of stainless steel.
- 3) Explain applications of PTFE.
- 4) Explain classification of bioceramics and mention its any 2 applications.
- 5) What are bioglasses? Mention its any 2 applications.

### 3. Attempt any 2:

 $(6 \times 2 = 12)$ 

- 1) Explain biocompatibility test performed on Cobalt based alloy.
- 2) Explain various applications of composite biomaterials.
- 3) Write a short note on (structure, applications):
  - a) Silicon rubber
  - b) Carbon implants

#### SECTION - II

### 4. Attempt any four:

 $(4 \times 4 = 16)$ 

- 1) Explain which material is suited as bone cement? Mention its specifications.
- 2) Explain materials can be protected from corrosion.

Set R



- 3) Which materials are used for soft tissue replacement? Discuss their properties.
- 4) Define thermoplastic and thermosetting resins. Mention its any two applications.
- 5) Discuss the properties and types of materials used in breast implants.

5. Attempt any 2:

 $(6 \times 2 = 12)$ 

- 1) Explain how surface properties of biomaterials are tested.
- 2) Write a short note on (structure and applications):
  - a) Wood and leathers
  - b) Alumina and zirconia.
- 3) Explain any 2 methods of biological testing of biomaterials in short.

| <br> | <br> | <br> | <br>••••• | <br> |
|------|------|------|-----------|------|

| Seat |  |
|------|--|
| No.  |  |

Set

S

# S.E. (Biomedical Engg.) (Part – I) (Old CGPA) Examination, 2018 BIOMATERIALS

Day and Date: Saturday, 5-5-2018 Total Marks: 70

Time: 2.30 p.m. to 5.30 p.m.

- Instructions: 1) Q. No. 1 is compulsory. It should be solved in first
  30 minutes in Answer Book Page No. 3. Each question
  carries one mark.
  - 2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.
  - 3) Figures to the **right** indicate **full** marks.
  - 4) Assume suitable data wherever required.

### MCQ/Objective Type Questions

| Dur | atio | n : 30 Minutes                                                                                    |                                                 |                                                |                | Marks: 14       |
|-----|------|---------------------------------------------------------------------------------------------------|-------------------------------------------------|------------------------------------------------|----------------|-----------------|
| 1.  | Ch   | (14×1=14)                                                                                         |                                                 |                                                |                |                 |
|     | 1)   | types of and metals.                                                                              | of biomaterial                                  | s are used as b                                | ridges betweer | n human tissues |
|     |      | a) Polymeric                                                                                      | b) Ceran                                        | nic c) Met                                     | tallic d) A    | All of these    |
|     | 2)   | Which of the folloa) Ceramic mate<br>b) Porcelain is us<br>c) Graphite is vis<br>d) Compacting ir | rials have lo<br>sed as insula<br>scoelastic in | w melting point<br>iting material ir<br>nature | spark plugs    | red             |
|     | 3)   | mate a) Limestone                                                                                 |                                                 |                                                |                |                 |
|     | 4)   | stresses                                                                                          |                                                 |                                                |                |                 |

| 5)   | Ductility means <ul><li>a) Metals can be d</li><li>b) Metals undergo</li><li>c) Metals undergo</li><li>d) All of the above</li></ul> | elastic deformatic                    |       |                    |                      |
|------|--------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-------|--------------------|----------------------|
| 6)   | Biosensors are use                                                                                                                   | d in                                  |       |                    |                      |
|      | a) medical field                                                                                                                     |                                       | b)    | agricultural fie   | eld                  |
|      | c) pollution monito                                                                                                                  | ring                                  | d)    | all of the above   | ve                   |
| 7)   | Restorative biomate of the                                                                                                           | erials are designed                   | d to  | recover the sha    | ape and the function |
|      | a) teeth                                                                                                                             | b) bone                               | c)    | tissue             | d) none of above     |
| 8)   | are thre pattern to the spaci                                                                                                        | · · · · · · · · · · · · · · · · · · · | )) ne | etworks of aton    | ns having no regular |
|      | a) Glasses                                                                                                                           | b) Fiber                              | c)    | Metal              | d) Polymer           |
| 9)   | Polycrystalline cera                                                                                                                 | mics have no                          |       | component          | S.                   |
|      | a) glassy                                                                                                                            | b) liquid                             | c)    | solid              | d) crystal           |
| 10)  | is the                                                                                                                               | ability of a materia                  | al to | perform with       | an appropriate host  |
|      | response in a spec                                                                                                                   | fic application.                      |       |                    |                      |
|      | a) Reduction                                                                                                                         |                                       | b)    | Biocompatibil      | ity                  |
|      | c) Oxidation                                                                                                                         |                                       | d)    | None of abov       | е                    |
| l1)  | Elastic deformation                                                                                                                  | in polymers is du                     | e to  | )                  |                      |
|      | a) Slight adjust of r                                                                                                                |                                       |       |                    |                      |
|      | b) Slippage of mole                                                                                                                  |                                       |       |                    |                      |
|      | c) Straightening of                                                                                                                  |                                       |       |                    |                      |
|      | d) Severe of covale                                                                                                                  |                                       |       |                    |                      |
| 12)  | One of characterist                                                                                                                  |                                       | -     |                    |                      |
|      | a) High temperatur                                                                                                                   | e stability                           | -     |                    | _                    |
| . 0/ | c) High elongation                                                                                                                   |                                       | •     | Low hardness       | 3                    |
| 13)  | Polymers are                                                                                                                         |                                       |       | le alle a caral le | .D                   |
|      | a) organic                                                                                                                           | _                                     | -     | both a and b       | a) none              |
| 14)  | polymers                                                                                                                             | _                                     |       |                    | 15 A II              |
|      | a) Thermoplasts                                                                                                                      | b) Thermosets                         | c)    | Elastomers         | d) All polymers      |



| Seat |  |
|------|--|
| No.  |  |

# S.E. (Biomedical Engg.) (Part – I) (Old CGPA) Examination, 2018 BIOMATERIALS

Day and Date: Saturday, 5-5-2018

Time: 2.30 p.m. to 5.30 p.m.

**Instructions**: 1) Figures to the **right** indicate **full** marks.

2) Assume suitable data wherever required.

#### SECTION - I

#### 2. Attempt any four:

 $(4 \times 4 = 16)$ 

Marks: 56

- 1) Classify biomaterial in detail.
- 2) Explain applications of stainless steel.
- 3) Explain applications of PTFE.
- 4) Explain classification of bioceramics and mention its any 2 applications.
- 5) What are bioglasses? Mention its any 2 applications.

#### 3. Attempt any 2:

 $(6 \times 2 = 12)$ 

- 1) Explain biocompatibility test performed on Cobalt based alloy.
- 2) Explain various applications of composite biomaterials.
- 3) Write a short note on (structure, applications):
  - a) Silicon rubber
  - b) Carbon implants

#### SECTION - II

### 4. Attempt any four:

- 1) Explain which material is suited as bone cement? Mention its specifications.
- 2) Explain materials can be protected from corrosion.



- 3) Which materials are used for soft tissue replacement? Discuss their properties.
- 4) Define thermoplastic and thermosetting resins. Mention its any two applications.
- 5) Discuss the properties and types of materials used in breast implants.

5. Attempt any 2:

 $(6 \times 2 = 12)$ 

- 1) Explain how surface properties of biomaterials are tested.
- 2) Write a short note on (structure and applications):
  - a) Wood and leathers
  - b) Alumina and zirconia.
- 3) Explain any 2 methods of biological testing of biomaterials in short.

\_\_\_\_\_

| <br> |  | ш | 111111 |  |
|------|--|---|--------|--|

|      | _   |   |
|------|-----|---|
| Seat | Cal | П |
| No.  | Set | P |
|      | -   |   |

# S.E. (Biomedical Engg.) (Part – I) (Old – CGPA) Examination, 2018 ELECTRONIC CIRCUIT ANALYSIS AND DESIGN – I

Day and Date: Monday, 7-5-2018 Total Marks: 70

Time: 2.30 p.m. to 5.30 p.m.

- Instructions: 1) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book Page No. 3. Each question carries one mark.
  - 2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

## **MCQ/Objective Type Questions**

| Dur | atio                          | n : 30 Minutes                                       |                                 |                | Marks: 14                   |
|-----|-------------------------------|------------------------------------------------------|---------------------------------|----------------|-----------------------------|
| 1.  | 1. Choose the correct answer: |                                                      |                                 |                |                             |
|     | 1)                            | type to a rectifier.                                 | of transformer is               | required to cr | eate 180 degree input       |
|     |                               | a) Center tap second                                 | ondary                          | b) Step dow    | n secondary                 |
|     |                               | c) Stepped up sec                                    | condary                         | d) Split wind  | ding primary                |
|     | 2)                            | In a power supply                                    | diagram                         | block in       | dicates a smooth dc output. |
|     |                               | a) transformer                                       | b) filter                       | c) rectifier   | d) regulator                |
|     | 3)                            | A current ratio of I                                 | /I <sub>E</sub> is usually less | than one and   | is called                   |
|     |                               | a) beta                                              | b) alpha                        | c) omega       | d) theta                    |
|     | 4)                            | In a transistor colle                                | ector current is co             | ntrolled by    |                             |
|     |                               | a) base current                                      |                                 | b) collector   | voltage                     |
|     |                               | c) collector resista                                 | ince                            | d) all         |                             |
|     | 5)                            | What is the current $I_E = 4.2 \text{ mA}$ and $I_C$ | guration where                  |                |                             |
|     |                               | a) 16.80                                             | b) 1.05                         | c) 0.20        | d) 0.95                     |

| 6)  | If a transistor opera current gain will mo         |                     |      |                 | e, a ( | decrease in  | the  |
|-----|----------------------------------------------------|---------------------|------|-----------------|--------|--------------|------|
|     | a) no where                                        | b) up               | c)   | down            | d)     | off the load | line |
| 7)  | In series regulator r controlling element.         | _                   |      | compo           | oner   | nt works as  | a    |
|     | a) load resistor                                   | b) zener diode      | c)   | transistor      | d)     | none of abo  | ove  |
| 8)  | type of                                            | regulator offers in | her  | ent short circu | ıit pı | rotection.   |      |
|     | a) shunt                                           | b) series c) t      | hre  | e terminal      | d)     | switching    |      |
| 9)  | Determine the value $I_{DSS} = 9mA$ , $V_{P} = -2$ |                     | anc  | e for N-channe  | el JF  | ET with      |      |
|     | a) 7.5 ms                                          | b) 6.5 ms           | c)   | 4.5 ms          | d)     | 5.5 ms       |      |
| 10) | Maximum power los                                  | ss in power device  | es c | occurs during _ |        | ti           | me.  |
|     | a) delay                                           | b) rise             | c)   | spread          | d)     | all          |      |
| 11) | Anode current in an                                | SCR consists of     |      |                 |        |              |      |
|     | a) holes only                                      |                     | b)   | electrons only  | /      |              |      |
|     | c) either electron o                               | r holes             | d)   | both electron   | and    | l holes      |      |
| 12) | is a tw                                            | o terminal three la | aye  | r device.       |        |              |      |
|     | a) BJT                                             | b) power diode      | c)   | MOSFET          | d)     | none         |      |
| 13) | is not a p                                         | ower transistor.    |      |                 |        |              |      |
|     | a) IGBT                                            | b) COLMOS           | c)   | TRIAC           | d)     | DIAC         |      |
| 14) | mode 2 external resistor a                         |                     |      |                 | 555    | timer chip h | nas  |
|     | a) Monostable                                      |                     | b)   | Pulse stretchi  | ng     |              |      |
|     | c) Schmidt trigger                                 |                     | d)   | Astable         |        |              |      |
|     |                                                    |                     |      |                 |        |              |      |



| Seat |  |
|------|--|
| No.  |  |

# S.E. (Biomedical Engg.) (Part – I) (Old – CGPA) Examination, 2018 ELECTRONIC CIRCUIT ANALYSIS AND DESIGN – I

Day and Date: Monday, 7-5-2018 Marks: 56

Time: 2.30 p.m. to 5.30 p.m.

#### SECTION - I

#### 2. Attempt any 4 questions:

 $(4 \times 4 = 16)$ 

- 1) Explain working of positive clamper and negative clamper with necessary waveform.
- 2) Design a fixed bias circuit. Using silicon transistor having  $h_{FE} = 100$ ,  $V_{CC} = 12V$  and  $V_{CF} = 6V$ ,  $I_{C} = 3mA$ ,  $V_{BF} = 0.7V$ .
- Draw and explain working of center tap full wave rectifier with neat waveform.
- 4) Define following term:
  - a) thermal shut down
  - b) short circuit protection.
- 5) Explain and draw various modes of BJT operations.

### 3. Attempt any 2 questions:

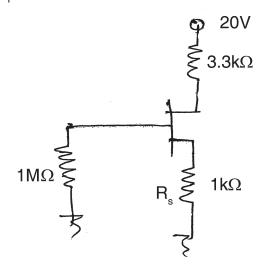
 $(6 \times 2 = 12)$ 

- Differentiate between common emitter common base and common collector of BJT configuration.
- 2) Draw and explain working of voltage doubler circuit.
- 3) Define following terms and mention their significance related to BJT:
  - a) thermal runway
  - b) stability factor
  - c) transistor as a switch.



#### SECTION - II

4. Attempt any 4 questions:


 $(4 \times 4 = 16)$ 

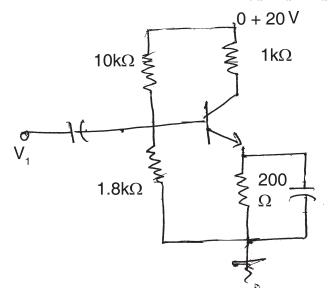
- 1) Define following parameter of FET:
  - a) transconductance
  - b) amplification factor
  - c) drain resistance
  - d) input resistance.
- 2) Differentiate between BJT and FET.
- 3) Determine the following for given network:

#### Given:

$$I_{DSS} = 8mA$$

$$V_P = -6V$$




- a)  $V_{GS}$
- b)  $I_D$
- c)  $V_{DS}$
- d)  $V_s$ .
- 4) Explain construction and working of DIAC power device.
- 5) Explain working of a stable multivibrator using IC555. Draw necessary waveform.



5. Attempt any 2 questions:

 $(6 \times 2 = 12)$ 

1) For the circuit shown determine :  $I_{\text{CQ}},\,I_{\text{BQ}},\,V_{\text{EQ}}$  and stability factor  $\beta$  = 80.



- 2) Explain construction and working of power transistors and trial.
- 3) Draw and explain various configuration of MOSFET in short.

| Seat |  |
|------|--|
| No.  |  |

Set Q

# S.E. (Biomedical Engg.) (Part – I) (Old – CGPA) Examination, 2018 ELECTRONIC CIRCUIT ANALYSIS AND DESIGN – I

Day and Date : Monday, 7-5-2018 Total Marks : 70

Time: 2.30 p.m. to 5.30 p.m.

- Instructions: 1) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book Page No. 3. Each question carries one mark.
  - 2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

# **MCQ/Objective Type Questions**

| Dur | atic | on : 30 Minutes                                    |                     |                   |                | Marks: 14 |
|-----|------|----------------------------------------------------|---------------------|-------------------|----------------|-----------|
| 1.  | Ch   | noose the correct an                               | swer:               |                   |                | (14×1=14) |
|     | 1)   | type of                                            | regulator offers in | herent short circ | uit protection |           |
|     |      | a) shunt                                           | b) series c) t      | hree terminal     | d) switching   | g         |
|     | 2)   | Determine the value $I_{DSS} = 9mA$ , $V_{P} = -2$ |                     | ance for N-chann  | el JFET with   |           |
|     |      | a) 7.5 ms                                          | b) 6.5 ms           | c) 4.5 ms         | d) 5.5 ms      |           |
|     | 3)   | Maximum power los                                  | ss in power devic   | es occurs during  |                | _ time.   |
|     |      | a) delay                                           | b) rise             | c) spread         | d) all         |           |
|     | 4)   | Anode current in ar                                | SCR consists of     |                   |                |           |
|     |      | a) holes only                                      |                     | b) electrons onl  | у              |           |
|     |      | c) either electron o                               | r holes             | d) both electron  | and holes      |           |
|     | 5)   | is a tw                                            | o terminal three I  | ayer device.      |                |           |
|     |      | a) BJT                                             | b) power diode      | c) MOSFET         | d) none        |           |
|     | 6)   | is not a p                                         | oower transistor.   |                   |                |           |
|     |      | a) IGBT                                            | b) COLMOS           | c) TRIAC          | d) DIAC        |           |

| 7)  |                                                        |                                  |                    | 555 timer chip has   |
|-----|--------------------------------------------------------|----------------------------------|--------------------|----------------------|
|     | 2 external resistor a                                  | nd an external ca                | apacitor.          |                      |
|     | a) Monostable                                          |                                  | b) Pulse stretch   | ing                  |
|     | c) Schmidt trigger                                     |                                  | d) Astable         |                      |
| 8)  | to a rectifier.                                        | of transformer is I              | required to create | 180 degree input     |
|     | a) Center tap secon                                    | ndary                            | b) Step down se    | econdary             |
|     | c) Stepped up seco                                     | ondary                           | d) Split winding   | primary              |
| 9)  | In a power supply dia                                  | agram                            | block indicates    | a smooth dc output.  |
|     | a) transformer                                         | b) filter                        | c) rectifier       | d) regulator         |
| 10) | A current ratio of I <sub>c</sub> /                    | I <sub>E</sub> is usually less t | than one and is ca | alled                |
|     | a) beta                                                | b) alpha                         | c) omega           | d) theta             |
| 11) | In a transistor collect                                | ctor current is con              | itrolled by        |                      |
|     | a) base current                                        |                                  | b) collector volta | age                  |
|     | c) collector resistar                                  | nce                              | d) all             |                      |
| 12) | What is the current $I_E = 4.2 \text{ mA}$ and $I_C =$ | •                                | on base configura  | tion where           |
|     | a) 16.80                                               | b) 1.05                          | c) 0.20            | d) 0.95              |
| 13) | If a transistor opera current gain will mo             |                                  |                    | e, a decrease in the |
|     | a) no where                                            | b) up                            | c) down            | d) off the load line |
| 14) | In series regulator r controlling element.             | _                                | comp               | onent works as a     |
|     | a) load resistor                                       | b) zener diode                   | c) transistor      | d) none of above     |



| Seat |  |
|------|--|
| No.  |  |

# S.E. (Biomedical Engg.) (Part – I) (Old – CGPA) Examination, 2018 ELECTRONIC CIRCUIT ANALYSIS AND DESIGN – I

Day and Date: Monday, 7-5-2018 Marks: 56

Time: 2.30 p.m. to 5.30 p.m.

#### SECTION - I

### 2. Attempt any 4 questions:

 $(4 \times 4 = 16)$ 

- 1) Explain working of positive clamper and negative clamper with necessary waveform.
- 2) Design a fixed bias circuit. Using silicon transistor having  $h_{FE} = 100$ ,  $V_{CC} = 12V$  and  $V_{CF} = 6V$ ,  $I_{C} = 3mA$ ,  $V_{BF} = 0.7V$ .
- Draw and explain working of center tap full wave rectifier with neat waveform.
- 4) Define following term:
  - a) thermal shut down
  - b) short circuit protection.
- 5) Explain and draw various modes of BJT operations.

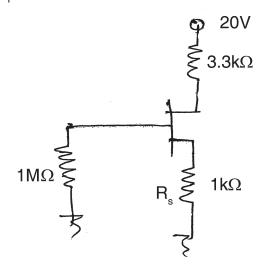
### 3. Attempt any 2 questions:

 $(6 \times 2 = 12)$ 

- Differentiate between common emitter common base and common collector of BJT configuration.
- 2) Draw and explain working of voltage doubler circuit.
- 3) Define following terms and mention their significance related to BJT:
  - a) thermal runway
  - b) stability factor
  - c) transistor as a switch.

### SECTION - II

4. Attempt any 4 questions:


 $(4 \times 4 = 16)$ 

- 1) Define following parameter of FET:
  - a) transconductance
  - b) amplification factor
  - c) drain resistance
  - d) input resistance.
- 2) Differentiate between BJT and FET.
- 3) Determine the following for given network:

#### Given:

$$I_{DSS} = 8mA$$

$$V_P = -6V$$



- a)  $V_{GS}$
- b)  $I_D$
- c)  $V_{DS}$
- d)  $V_s$ .
- 4) Explain construction and working of DIAC power device.
- 5) Explain working of a stable multivibrator using IC555. Draw necessary waveform.



5. Attempt any 2 questions:

 $(6 \times 2 = 12)$ 

1) For the circuit shown determine :  $I_{\text{CQ}},\,I_{\text{BQ}},\,V_{\text{EQ}}$  and stability factor  $\beta$  = 80.



- 2) Explain construction and working of power transistors and trial.
- 3) Draw and explain various configuration of MOSFET in short.

| Seat |  |
|------|--|
| No.  |  |

### S.E. (Biomedical Engg.) (Part – I) (Old – CGPA) Examination, 2018 **ELECTRONIC CIRCUIT ANALYSIS AND DESIGN - I**

Total Marks: 70 Day and Date: Monday, 7-5-2018

Time: 2.30 p.m. to 5.30 p.m.

- Instructions: 1) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book Page No. 3. Each question carries one mark.
  - 2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

# MOO/Objective Type Overtions

|      |     |                                                     | wcQ/Objecti      | ve i  | ype Questions     |                 |           |
|------|-----|-----------------------------------------------------|------------------|-------|-------------------|-----------------|-----------|
| Dura | tio | n : 30 Minutes                                      |                  |       |                   |                 | Marks: 14 |
| 1.   | Ch  | noose the correct a                                 | nswer:           |       |                   |                 | (14×1=14) |
|      | 1)  | What is the curren $I_F = 4.2 \text{ mA}$ and $I_C$ | •                | mm    | on base configu   | ration where    |           |
|      |     | a) 16.80                                            | b) 1.05          |       | c) 0.20           | d) 0.95         |           |
|      | 2)  | If a transistor oper current gain will m            |                  |       |                   |                 | e in the  |
|      |     | a) no where                                         | b) up            |       | c) down           | d) off the le   | oad line  |
|      | 3)  | In series regulator controlling elemen              | •                | uit _ | com               | ponent works    | as a      |
|      |     | a) load resistor                                    | b) zener die     | ode   | c) transistor     | d) none of      | above     |
|      | 4)  | type o                                              | f regulator offe | ers i | nherent short cir | cuit protection | ١.        |
|      |     | a) shunt                                            | b) series        | c)    | three terminal    | d) switchin     | ıg        |
|      | 5)  | Determine the value $I_{DSS} = 9mA, V_{P} = -$      |                  |       | tance for N-chan  | nel JFET with   | 1         |
|      |     | a) 7.5 ms                                           | b) 6.5 ms        |       | c) 4.5 ms         | d) 5.5 ms       |           |
|      | 6)  | Maximum power lo                                    | oss in power o   | levio | ces occurs during | 9               | time.     |
|      |     | a) delav                                            | b) rise          |       | c) spread         | d) all          |           |

| 7)  | Anode current in an            | SCR consists of                  |      |                 |                     |
|-----|--------------------------------|----------------------------------|------|-----------------|---------------------|
|     | a) holes only                  |                                  | b)   | electrons only  | y                   |
|     | c) either electron or          | r holes                          | d)   | both electron   | and holes           |
| 8)  | is a tw                        |                                  |      |                 |                     |
|     | a) BJT                         | b) power diode                   | c)   | MOSFET          | d) none             |
| 9)  | is not a p                     | ower transistor.                 |      |                 |                     |
|     | a) IGBT                        | b) COLMOS                        | c)   | TRIAC           | d) DIAC             |
| 10) | mode = 2 external resistor a   | =                                | _    |                 | 555 timer chip has  |
|     | a) Monostable                  |                                  | b)   | Pulse stretch   | ing                 |
|     | c) Schmidt trigger             |                                  | d)   | Astable         |                     |
| 11) | to a rectifier.                | of transformer is r              | equ  | uired to create | 180 degree input    |
|     | a) Center tap secon            | ndary                            | b)   | Step down se    | econdary            |
|     | c) Stepped up seco             | ondary                           | d)   | Split winding   | primary             |
| 12) | In a power supply dia          | agram                            |      | block indicates | a smooth dc output. |
|     | a) transformer                 | b) filter                        | c)   | rectifier       | d) regulator        |
| 13) | A current ratio of $I_{\rm c}$ | l <sub>e</sub> is usually less t | har  | n one and is ca | alled               |
|     | a) beta                        | b) alpha                         | c)   | omega           | d) theta            |
| 14) | In a transistor collect        | ctor current is con              | trol | led by          |                     |
|     | a) base current                |                                  | b)   | collector volta | age                 |
|     | c) collector resistar          | nce                              | d)   | all             |                     |
|     |                                |                                  |      |                 |                     |



| Seat |  |
|------|--|
| No.  |  |

# S.E. (Biomedical Engg.) (Part – I) (Old – CGPA) Examination, 2018 ELECTRONIC CIRCUIT ANALYSIS AND DESIGN – I

Day and Date: Monday, 7-5-2018 Marks: 56

Time: 2.30 p.m. to 5.30 p.m.

#### SECTION - I

### 2. Attempt any 4 questions:

 $(4 \times 4 = 16)$ 

- 1) Explain working of positive clamper and negative clamper with necessary waveform.
- 2) Design a fixed bias circuit. Using silicon transistor having  $h_{FE} = 100$ ,  $V_{CC} = 12V$  and  $V_{CF} = 6V$ ,  $I_{C} = 3mA$ ,  $V_{BF} = 0.7V$ .
- Draw and explain working of center tap full wave rectifier with neat waveform.
- 4) Define following term:
  - a) thermal shut down
  - b) short circuit protection.
- 5) Explain and draw various modes of BJT operations.

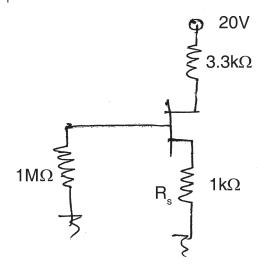
### 3. Attempt any 2 questions:

 $(6 \times 2 = 12)$ 

- Differentiate between common emitter common base and common collector of BJT configuration.
- 2) Draw and explain working of voltage doubler circuit.
- 3) Define following terms and mention their significance related to BJT:
  - a) thermal runway
  - b) stability factor
  - c) transistor as a switch.

#### SECTION - II

4. Attempt any 4 questions:


 $(4 \times 4 = 16)$ 

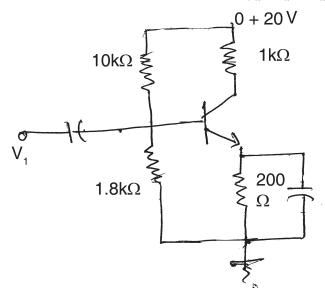
- 1) Define following parameter of FET:
  - a) transconductance
  - b) amplification factor
  - c) drain resistance
  - d) input resistance.
- 2) Differentiate between BJT and FET.
- 3) Determine the following for given network:

#### Given:

$$I_{DSS} = 8mA$$

$$V_P = -6V$$




- a)  $V_{GS}$
- b)  $I_D$
- c)  $V_{DS}$
- d)  $V_s$ .
- 4) Explain construction and working of DIAC power device.
- 5) Explain working of a stable multivibrator using IC555. Draw necessary waveform.



5. Attempt any 2 questions:

 $(6 \times 2 = 12)$ 

1) For the circuit shown determine :  $I_{\text{CQ}},\,I_{\text{BQ}},\,V_{\text{EQ}}$  and stability factor  $\beta$  = 80.



- 2) Explain construction and working of power transistors and trial.
- 3) Draw and explain various configuration of MOSFET in short.

| Seat |  |
|------|--|
| No.  |  |

Set S

# S.E. (Biomedical Engg.) (Part – I) (Old – CGPA) Examination, 2018 ELECTRONIC CIRCUIT ANALYSIS AND DESIGN – I

Day and Date: Monday, 7-5-2018 Total Marks: 70

Time: 2.30 p.m. to 5.30 p.m.

- Instructions: 1) Q. No. 1 is compulsory. It should be solved in first
  30 minutes in Answer Book Page No. 3. Each question
  carries one mark.
  - 2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

# **MCQ/Objective Type Questions**

| Dur | atio | n : 30 Minut | tes          |                                     |      |               |       |          | Marks: 14 |
|-----|------|--------------|--------------|-------------------------------------|------|---------------|-------|----------|-----------|
| 1.  | Ch   | noose the co | orrect answ  | er:                                 |      |               |       |          | (14×1=14) |
|     | 1)   | Maximum p    | oower loss   | in power devic                      | es ( | occurs during | J     |          | _ time.   |
|     |      | a) delay     | b            | ) rise                              | c)   | spread        | d)    | all      |           |
|     | 2)   | Anode curr   | ent in an S  | CR consists of                      |      |               |       |          |           |
|     |      | a) holes or  | nly          |                                     |      |               |       |          |           |
|     |      | b) electron  | s only       |                                     |      |               |       |          |           |
|     |      | c) either el | lectron or h | oles                                |      |               |       |          |           |
|     |      | d) both ele  | ectron and h | noles                               |      |               |       |          |           |
|     | 3)   |              | _ is a two t | erminal three I                     | aye  | r device.     |       |          |           |
|     |      | a) BJT       | b            | ) power diode                       | c)   | MOSFET        | d)    | none     |           |
|     | 4)   |              | is not a pov | ver transistor.                     |      |               |       |          |           |
|     |      | a) IGBT      | b            | ) COLMOS                            | c)   | TRIAC         | d)    | DIAC     |           |
|     | 5)   |              |              | operation is be<br>l an external ca | _    |               | a 555 | timer ch | nip has   |
|     |      | a) Monosta   | able         |                                     | b)   | Pulse stretc  | hing  |          |           |
|     |      | c) Schmid    | t trigger    |                                     | d)   | Astable       |       |          |           |

| 6)  | type of transformer is required to create 180 degree input |                                  |                    |                      |  |
|-----|------------------------------------------------------------|----------------------------------|--------------------|----------------------|--|
|     | to a rectifier.                                            |                                  |                    |                      |  |
|     | a) Center tap secon                                        | ndary                            | b) Step down se    | econdary             |  |
|     | c) Stepped up seco                                         | ondary                           | d) Split winding   | primary              |  |
| 7)  | In a power supply dia                                      | agram                            | block indicates    | a smooth dc output.  |  |
|     | a) transformer                                             | b) filter                        | c) rectifier       | d) regulator         |  |
| 8)  | A current ratio of $I_{\rm c}$                             | l <sub>e</sub> is usually less t | han one and is ca  | alled                |  |
|     | a) beta                                                    | b) alpha                         | c) omega           | d) theta             |  |
| 9)  | In a transistor collect                                    | ctor current is con              | trolled by         |                      |  |
|     | a) base current                                            |                                  | b) collector volta | age                  |  |
|     | c) collector resistar                                      | nce                              | d) all             |                      |  |
| 10) | What is the current                                        | •                                | n base configura   | tion where           |  |
|     | $I_E = 4.2 \text{ mA} \text{ and } I_C =$                  | 4.0 mA ?                         |                    |                      |  |
|     | a) 16.80                                                   | b) 1.05                          | c) 0.20            | d) 0.95              |  |
| 11) | If a transistor opera current gain will mo                 |                                  |                    | e, a decrease in the |  |
|     | a) no where                                                | b) up                            | c) down            | d) off the load line |  |
| 12) | In series regulator r controlling element.                 |                                  | comp               | onent works as a     |  |
|     | a) load resistor                                           | b) zener diode                   | c) transistor      | d) none of above     |  |
| 13) | type of                                                    | regulator offers in              | herent short circu | uit protection.      |  |
|     | a) shunt                                                   | b) series c) t                   | hree terminal      | d) switching         |  |
| 14) | Determine the value                                        |                                  | ance for N-chann   | el JFET with         |  |
|     | $I_{DSS} = 9mA, V_{P} = -2$                                | $^{2}V$ , $V_{GS} = -1V$ .       |                    |                      |  |
|     | a) 7.5 ms                                                  | b) 6.5 ms                        | c) 4.5 ms          | d) 5.5 ms            |  |
|     |                                                            |                                  |                    |                      |  |



| Seat |  |
|------|--|
| No.  |  |

# S.E. (Biomedical Engg.) (Part – I) (Old – CGPA) Examination, 2018 ELECTRONIC CIRCUIT ANALYSIS AND DESIGN – I

Day and Date: Monday, 7-5-2018 Marks: 56

Time: 2.30 p.m. to 5.30 p.m.

#### SECTION - I

### 2. Attempt any 4 questions:

 $(4 \times 4 = 16)$ 

- 1) Explain working of positive clamper and negative clamper with necessary waveform.
- 2) Design a fixed bias circuit. Using silicon transistor having  $h_{FE} = 100$ ,  $V_{CC} = 12V$  and  $V_{CF} = 6V$ ,  $I_{C} = 3mA$ ,  $V_{BF} = 0.7V$ .
- Draw and explain working of center tap full wave rectifier with neat waveform.
- 4) Define following term:
  - a) thermal shut down
  - b) short circuit protection.
- 5) Explain and draw various modes of BJT operations.

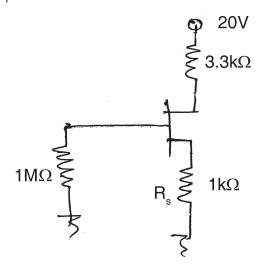
### 3. Attempt any 2 questions:

 $(6 \times 2 = 12)$ 

- Differentiate between common emitter common base and common collector of BJT configuration.
- 2) Draw and explain working of voltage doubler circuit.
- 3) Define following terms and mention their significance related to BJT:
  - a) thermal runway
  - b) stability factor
  - c) transistor as a switch.

### SECTION - II

4. Attempt any 4 questions:


 $(4 \times 4 = 16)$ 

- 1) Define following parameter of FET:
  - a) transconductance
  - b) amplification factor
  - c) drain resistance
  - d) input resistance.
- 2) Differentiate between BJT and FET.
- 3) Determine the following for given network:

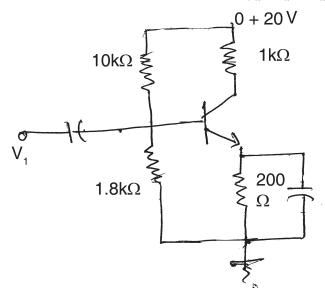
#### Given:

$$I_{DSS} = 8mA$$

$$V_P = -6V$$



- a)  $V_{GS}$
- b)  $I_D$
- c)  $V_{DS}$
- d) V<sub>s</sub>.
- 4) Explain construction and working of DIAC power device.
- 5) Explain working of a stable multivibrator using IC555. Draw necessary waveform.






5. Attempt any 2 questions:

 $(6 \times 2 = 12)$ 

1) For the circuit shown determine :  $I_{\text{CQ}},\,I_{\text{BQ}},\,V_{\text{EQ}}$  and stability factor  $\beta$  = 80.



- 2) Explain construction and working of power transistors and trial.
- 3) Draw and explain various configuration of MOSFET in short.

| Seat |  |
|------|--|
| No.  |  |

Set P

# S.E. (Biomedical Engg.) (Part – I) (Old CGPA) Examination, 2018 LINEAR CIRCUIT ANALYSIS

Day and Date : Tuesday, 8-5-2018 Total Marks : 70

Time: 2.30 p.m. to 5.30 p.m.

- Instructions: 1) Q. No. 1 is compulsory. It should be solved in first
  30 minutes in Answer Book Page No. 3. Each question
  carries one mark.
  - 2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

# **MCQ/Objective Type Questions**

| Dur | atio                                                          | n : 30 Minutes                              |                             |                |             | Marks: 14 |
|-----|---------------------------------------------------------------|---------------------------------------------|-----------------------------|----------------|-------------|-----------|
| 1.  | Ch                                                            | noose the correct and                       | swer:                       |                |             | (1×14=14) |
|     | 1)                                                            | is                                          | s not a bilateral.          |                |             |           |
|     |                                                               | a) Resistor                                 | b) Diode                    | c) Capacitor   | d) Inductor |           |
|     | 2)                                                            | In active filter,                           | elem                        | ent is absent. |             |           |
|     |                                                               | a) Inductor                                 |                             | b) Capacitor   |             |           |
|     |                                                               | c) Both a) and b)                           |                             | d) Resistor    |             |           |
|     | 3)                                                            | Reactive power dra                          | wn by a pure resi           | stor is        |             |           |
|     |                                                               | a) 0                                        |                             | b) Minimum     |             |           |
|     |                                                               | c) Maximum                                  |                             | d) Average     |             |           |
|     | 4) Under resonance condition, the power factor of a system is |                                             |                             |                |             |           |
|     |                                                               | a) Unity                                    | b) Lagging                  | c) Leading     | d) Any of a | bove      |
|     | 5)                                                            | In an AC circuit con<br>120V, 50Hz, while t | • .                         |                | •           | be        |
|     |                                                               | a) 35 mH                                    | b) 34 mH                    | c) 30 mH       | d) 38 mH    |           |
|     | 6)                                                            | In 2 port network, Z                        | $I_{12} = Z_{21}$ indicates |                | property.   |           |
|     |                                                               | a) Unilateral                               | b) Bilateral                | c) Linear      | d) Non-line | ar        |

| 7)  | Advantage of active                                                                                                                                                | filter is                                            |                                                                    |                                                      |  |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------|--|
|     | a) Do not offer again                                                                                                                                              |                                                      | b) Easy to tune                                                    |                                                      |  |
|     | c) Both a) and b)                                                                                                                                                  |                                                      | d) Derive high in                                                  | mpedance load                                        |  |
| 8)  | Number of an ideal especially for casca                                                                                                                            |                                                      | •                                                                  | •                                                    |  |
|     | a) Zero                                                                                                                                                            | b) Unity                                             | c) Infinity                                                        | d) Unpredictable                                     |  |
| 9)  |                                                                                                                                                                    |                                                      | e $V_s = 100V$ in series with $5\Omega$ and pedance parameters are |                                                      |  |
|     | a) $\begin{bmatrix} 20 & 2 \\ 40 & 10 \end{bmatrix}$                                                                                                               | b) $\begin{bmatrix} 20 & 40 \\ 2 & 10 \end{bmatrix}$ | c) $\begin{bmatrix} 10 & 40 \\ 10 & 20 \end{bmatrix}$              | d) $\begin{bmatrix} 20 & 2 \\ 10 & 40 \end{bmatrix}$ |  |
| 10) | In series R – L circu                                                                                                                                              | uit, power factor ca                                 | an be defined as                                                   |                                                      |  |
|     | a) R/Z                                                                                                                                                             | b) P/S                                               | c) V/V                                                             | d) All above                                         |  |
| 11) | Superposition theor                                                                                                                                                | em is not applica                                    | ble for                                                            |                                                      |  |
|     | a) Current calculati                                                                                                                                               | on                                                   | b) Voltage calcu                                                   | ulation                                              |  |
|     | c) Power calculatio                                                                                                                                                | n                                                    | d) Energy calcu                                                    | lation                                               |  |
| 12) | ) A circuit with a resistor, inductor and capacitor in series is resonant at $f_0$ Hz. If all the components values are now doubled, the new resonant frequency is |                                                      |                                                                    |                                                      |  |
|     | a) 2f <sub>0</sub>                                                                                                                                                 | b) f <sub>0</sub>                                    | c) f <sub>0</sub> /4                                               | d) $f_0/2$                                           |  |
|     | In a series R-L-C ci                                                                                                                                               |                                                      |                                                                    |                                                      |  |
|     | a) $2 \times 10^4$ Hz<br>A network contains                                                                                                                        | b) $\frac{1}{\pi} \times 10^4 \text{Hz}$             | c) 10 <sup>4</sup> Hz                                              | d) $2\pi \times 10^4 \text{ Hz}$                     |  |
| 14) | A network contains the values of all res                                                                                                                           | only an independ istors are doubled                  | lent current sourd<br>d. The value of th                           | ce and resistors. If e node voltages will            |  |
|     | a) Becomes half                                                                                                                                                    |                                                      | b) Remain unch                                                     | nanged                                               |  |
|     | c) Becomes double                                                                                                                                                  | •                                                    | d) None of the a                                                   | above                                                |  |
|     |                                                                                                                                                                    |                                                      |                                                                    |                                                      |  |

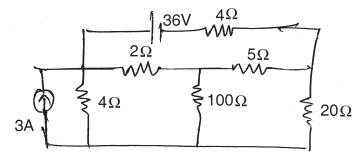


| Seat |  |
|------|--|
| No.  |  |

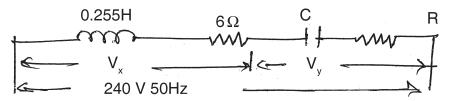
# S.E. (Biomedical Engg.) (Part – I) (Old CGPA) Examination, 2018 LINEAR CIRCUIT ANALYSIS

Day and Date: Tuesday, 8-5-2018

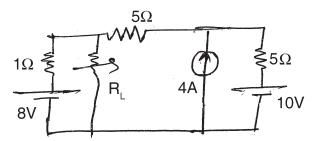
Time: 2.30 p.m. to 5.30 p.m.


SECTION - I

2. Attempt any 4 questions:


 $(4 \times 4 = 16)$ 

Marks: 56

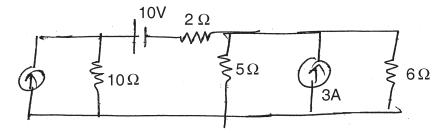

1) Determine the current through the  $5\Omega$  resistor using nodal analysis.



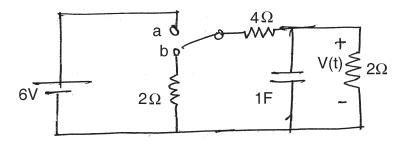
- 2) State and explain superposition theorem.
- 3) Find the values of R and C, so that  $V_x = 3V_y$ ,  $V_x$  and  $V_y$  are in quadrature.



- 4) Compare between Thevenin's theorem and Norton's theorem.
- 5) For the circuit shown, find the value of resistance  $R_{\rm L}$  for maximum power and calculate maximum power.







3. Attempt any two questions:

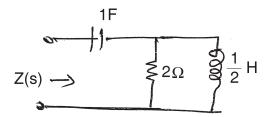
 $(6 \times 2 = 12)$ 

1) Using Thevenin's theorem, find the current through the  $6\Omega$  resistor.



2) For the network shown below, the switch is moved from 'a' to 'b' at t = 0, find V(t).



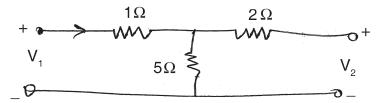

- 3) Write a short note on:
  - a) Mesh and Nodal analysis.
  - b) Current and voltage source transformation.

SECTION - II

4. Attempt **any 4** questions:

 $(4 \times 4 = 16)$ 

- 1) With the help of neat diagram, explain working of band pass and band reject filter.
- 2) Find poles and zeros of the impedance of the following network and plot them on S-plane.

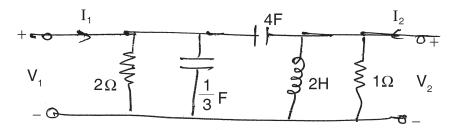



3) Derive condition for reciprocity for open circuit impedance parameter.

-5-



4) Find the transmission parameter for the network shown.




5) Explain how 2 port network can be represented by an equivalent T network.

### 5. Attempt any 2 questions:

 $(6 \times 2 = 12)$ 

1) Find Y parameter for shown network.



- 2) Draw and explain concept of notch filtering using RC and RL circuits.
- 3) Write a short note on:
  - a) ABCD parameter in term of Z parameter.
  - b) ABCD parameter in term of Y parameter.

\_\_\_\_

| Seat |  |
|------|--|
| No.  |  |

frequency is \_\_\_\_\_

a) 2f<sub>0</sub>

b) f<sub>0</sub>

Set



# S.E. (Biomedical Engg.) (Part – I) (Old CGPA) Examination, 2018 LINEAR CIRCUIT ANALYSIS

Day and Date: Tuesday, 8-5-2018 Total Marks: 70 Time: 2.30 p.m. to 5.30 p.m. **Instructions**: 1) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book Page No. 3. Each guestion carries one mark. 2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page. MCQ/Objective Type Questions **Duration: 30 Minutes** Marks: 14 1. Choose the correct answer:  $(1 \times 14 = 14)$ 1) Number of an ideal value of attenuation for the frequencies in pass band especially for cascade configuration is a) Zero b) Unity c) Infinity d) Unpredictable 2) A 2 port network is driven by a source  $V_s = 100V$  in series with  $5\Omega$  and terminated in a 25 $\Omega$  resistor. The impedance parameters are \_\_\_\_ b)  $\begin{bmatrix} 20 & 40 \\ 2 & 10 \end{bmatrix}$  c)  $\begin{bmatrix} 10 & 40 \\ 10 & 20 \end{bmatrix}$  d)  $\begin{bmatrix} 20 & 2 \\ 10 & 40 \end{bmatrix}$ In series R – L circuit, power factor can be defined as \_\_\_\_\_ b) P/S c) V/V d) All above a) R/Z 4) Superposition theorem is not applicable for a) Current calculation b) Voltage calculation c) Power calculation d) Energy calculation 5) A circuit with a resistor, inductor and capacitor in series is resonant at f<sub>o</sub> Hz. If all the components values are now doubled, the new resonant

c) f<sub>0</sub>/4

d)  $f_0/2$ 

| 6) In a series R-L-C circuit, R = $2k\Omega$ , L = 1H, C = $1/400 \mu f$ . The resoftequency is |                                                                               |                       |                                  |  |
|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-----------------------|----------------------------------|--|
|                                                                                                 | a) $2 \times 10^4 \text{ Hz}$ b) $\frac{1}{\pi} \times 10^4 \text{Hz}$        | c) 10 <sup>4</sup> Hz | d) $2\pi \times 10^4 \text{ Hz}$ |  |
| 7)                                                                                              | A network contains only an independent the values of all resistors are double | ident current sou     | rce and resistors. If            |  |
|                                                                                                 | a) Becomes half                                                               | b) Remain un          | changed                          |  |
|                                                                                                 | c) Becomes double                                                             | d) None of the        | e above                          |  |
| 8)                                                                                              | is not a bilateral.                                                           |                       |                                  |  |
|                                                                                                 | a) Resistor b) Diode                                                          | c) Capacitor          | d) Inductor                      |  |
| 9)                                                                                              | In active filter, elen                                                        | nent is absent.       |                                  |  |
|                                                                                                 | a) Inductor                                                                   | b) Capacitor          |                                  |  |
|                                                                                                 | c) Both a) and b)                                                             | d) Resistor           |                                  |  |
| 10)                                                                                             | Reactive power drawn by a pure res                                            |                       |                                  |  |
|                                                                                                 | a) 0                                                                          | b) Minimum            |                                  |  |
|                                                                                                 | c) Maximum                                                                    | d) Average            |                                  |  |
| 11)                                                                                             | Under resonance condition, the pov                                            | ver factor of a sy    | stem is                          |  |
|                                                                                                 | a) Unity b) Lagging                                                           | c) Leading            | d) Any of above                  |  |
| 12)                                                                                             | In an AC circuit containing pure indu<br>120V, 50Hz, while the current is 10  |                       | •                                |  |
|                                                                                                 | a) 35 mH b) 34 mH                                                             | c) 30 mH              | d) 38 mH                         |  |
| 13)                                                                                             | In 2 port network, $Z_{12} = Z_{21}$ indicates                                | S                     | _ property.                      |  |
|                                                                                                 | a) Unilateral b) Bilateral                                                    |                       | d) Non-linear                    |  |
| 14)                                                                                             | Advantage of active filter is                                                 |                       |                                  |  |
|                                                                                                 | a) Do not offer again                                                         | b) Easy to tun        | е                                |  |
|                                                                                                 | c) Both a) and b)                                                             | d) Derive high        | impedance load                   |  |
|                                                                                                 |                                                                               |                       |                                  |  |

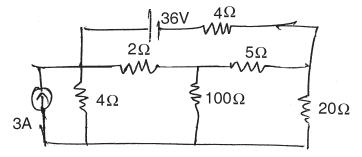


| Seat |  |
|------|--|
| No.  |  |

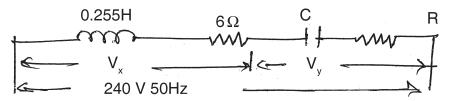
# S.E. (Biomedical Engg.) (Part – I) (Old CGPA) Examination, 2018 LINEAR CIRCUIT ANALYSIS

Day and Date: Tuesday, 8-5-2018

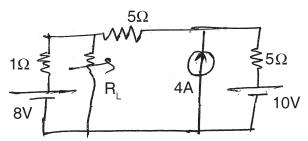
Time: 2.30 p.m. to 5.30 p.m.


SECTION - I

2. Attempt any 4 questions:


 $(4 \times 4 = 16)$ 

Marks: 56

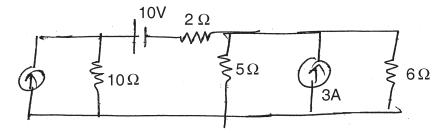

1) Determine the current through the  $5\Omega$  resistor using nodal analysis.



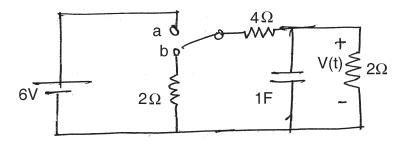
- 2) State and explain superposition theorem.
- 3) Find the values of R and C, so that  $V_x = 3V_y$ ,  $V_x$  and  $V_y$  are in quadrature.



- 4) Compare between Thevenin's theorem and Norton's theorem.
- 5) For the circuit shown, find the value of resistance  $R_{\rm L}$  for maximum power and calculate maximum power.







3. Attempt any two questions:

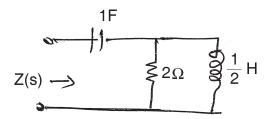
 $(6 \times 2 = 12)$ 

1) Using Thevenin's theorem, find the current through the  $6\Omega$  resistor.



2) For the network shown below, the switch is moved from 'a' to 'b' at t = 0, find V(t).



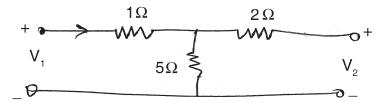

- 3) Write a short note on:
  - a) Mesh and Nodal analysis.
  - b) Current and voltage source transformation.

SECTION - II

4. Attempt **any 4** questions:

 $(4 \times 4 = 16)$ 

- 1) With the help of neat diagram, explain working of band pass and band reject filter.
- 2) Find poles and zeros of the impedance of the following network and plot them on S-plane.

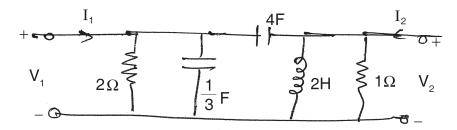



3) Derive condition for reciprocity for open circuit impedance parameter.

-5-



4) Find the transmission parameter for the network shown.




5) Explain how 2 port network can be represented by an equivalent T network.

### 5. Attempt any 2 questions:

 $(6 \times 2 = 12)$ 

1) Find Y parameter for shown network.



- 2) Draw and explain concept of notch filtering using RC and RL circuits.
- 3) Write a short note on:
  - a) ABCD parameter in term of Z parameter.
  - b) ABCD parameter in term of Y parameter.

|--|--|

| Seat |  |
|------|--|
| No.  |  |

### S.E. (Biomedical Engg.) (Part – I) (Old CGPA) Examination, 2018 LINEAR CIRCUIT ANALYSIS

Total Marks: 70 Day and Date: Tuesday, 8-5-2018

Time: 2.30 p.m. to 5.30 p.m.

- Instructions: 1) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book Page No. 3. Each question carries one mark.
  - 2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

### MCQ/Objective Type Questions

| Dur                                                                                                      | atio                                                                                                                                                  | n : 30 Minutes                                       |                                                      |                                                       | Marks: 14                                            |
|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------|
| 1.                                                                                                       | Ch                                                                                                                                                    | noose the correct a                                  | ınswer :                                             |                                                       | (1×14=14)                                            |
| <ol> <li>In an AC circuit containing pure inducta<br/>120V, 50Hz, while the current is 10A. T</li> </ol> |                                                                                                                                                       |                                                      | • .                                                  |                                                       | •                                                    |
|                                                                                                          |                                                                                                                                                       | a) 35 mH                                             | b) 34 mH                                             | c) 30 mH                                              | d) 38 mH                                             |
|                                                                                                          | 2)                                                                                                                                                    | In 2 port network,                                   | $Z_{12} = Z_{21}$ indicates                          | S                                                     | property.                                            |
|                                                                                                          |                                                                                                                                                       |                                                      |                                                      |                                                       | d) Non-linear                                        |
| 3) Advantage of active filter is                                                                         |                                                                                                                                                       |                                                      |                                                      |                                                       |                                                      |
|                                                                                                          |                                                                                                                                                       | a) Do not offer ag                                   | gain                                                 | b) Easy to tu                                         | ne                                                   |
|                                                                                                          |                                                                                                                                                       | c) Both a) and b)                                    |                                                      | d) Derive hig                                         | h impedance load                                     |
|                                                                                                          | 4)                                                                                                                                                    | Number of an ide especially for cas                  | al value of attenua                                  | ation for the freq                                    | uencies in pass band                                 |
|                                                                                                          |                                                                                                                                                       | a) Zero                                              | b) Unity                                             | c) Infinity                                           | d) Unpredictable                                     |
|                                                                                                          | 5) A 2 port network is driven by a source $V_s = 100V$ in series with $5\Omega$ and terminated in a $25\Omega$ resistor. The impedance parameters are |                                                      |                                                      |                                                       |                                                      |
|                                                                                                          |                                                                                                                                                       | a) $\begin{bmatrix} 20 & 2 \\ 40 & 10 \end{bmatrix}$ | b) $\begin{bmatrix} 20 & 40 \\ 2 & 10 \end{bmatrix}$ | c) $\begin{bmatrix} 10 & 40 \\ 10 & 20 \end{bmatrix}$ | d) $\begin{bmatrix} 20 & 2 \\ 10 & 40 \end{bmatrix}$ |

| 6)  | In series R – L circuit, power factor can be defined as                                                                                                |                                        |       |                    |                                  |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-------|--------------------|----------------------------------|
|     | a) R/Z                                                                                                                                                 | b) P/S                                 | c)    | $V_{r}/V$          | d) All above                     |
| 7)  | Superposition theor                                                                                                                                    | em is not applica                      | ble   | for                |                                  |
|     | a) Current calculati                                                                                                                                   | on                                     | b)    | Voltage calcu      | lation                           |
|     | c) Power calculation                                                                                                                                   | n                                      | d)    | Energy calcul      | ation                            |
| 8)  | A circuit with a resistor, inductor and f <sub>0</sub> Hz. If all the components values are frequency is                                               |                                        | e n   | ow doubled, th     | e new resonant                   |
|     | a) 2f <sub>0</sub>                                                                                                                                     | b) f <sub>o</sub>                      | c)    | f <sub>0</sub> /4  | d) $f_0/2$                       |
| 9)  | In a series R-L-C ci frequency is                                                                                                                      |                                        | = 1   | H, $C = 1/400 \mu$ | ւf. The resonant                 |
|     | a) 2 × 10 <sup>4</sup> Hz                                                                                                                              | b) $\frac{1}{2} \times 10^4 \text{Hz}$ | c)    | 10⁴Hz              | d) $2\pi \times 10^4 \text{ Hz}$ |
| 10) | ) A network contains only an independent current source and resistors. If the values of all resistors are doubled. The value of the node voltages will |                                        |       |                    |                                  |
|     | a) Becomes half                                                                                                                                        |                                        | b)    | Remain unch        | anged                            |
|     | c) Becomes double                                                                                                                                      | )                                      | d)    | None of the a      | bove                             |
| 11) | is                                                                                                                                                     | not a bilateral.                       |       |                    |                                  |
|     | a) Resistor                                                                                                                                            | b) Diode                               | c)    | Capacitor          | d) Inductor                      |
| 12) | In active filter,                                                                                                                                      | elem                                   | ent   | is absent.         |                                  |
|     | a) Inductor                                                                                                                                            |                                        | b)    | Capacitor          |                                  |
|     | c) Both a) and b)                                                                                                                                      |                                        | d)    | Resistor           |                                  |
| 13) | Reactive power dra                                                                                                                                     | wn by a pure res                       | isto  | r is               |                                  |
|     | a) 0                                                                                                                                                   |                                        | b)    | Minimum            |                                  |
|     | c) Maximum                                                                                                                                             |                                        | d)    | Average            |                                  |
| 14) | Under resonance co                                                                                                                                     | ondition, the pow                      | er fa | actor of a syste   | em is                            |
|     | a) Unity                                                                                                                                               | b) Lagging                             | c)    | Leading            | d) Any of above                  |
|     |                                                                                                                                                        |                                        |       |                    |                                  |

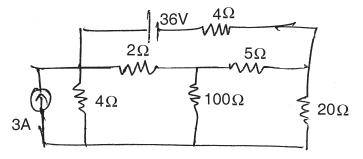


| Seat |  |
|------|--|
| No.  |  |

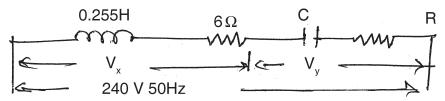
# S.E. (Biomedical Engg.) (Part – I) (Old CGPA) Examination, 2018 LINEAR CIRCUIT ANALYSIS

Day and Date: Tuesday, 8-5-2018

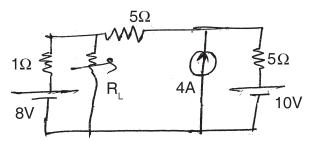
Time: 2.30 p.m. to 5.30 p.m.


#### SECTION - I

### 2. Attempt any 4 questions:


 $(4 \times 4 = 16)$ 

Marks: 56

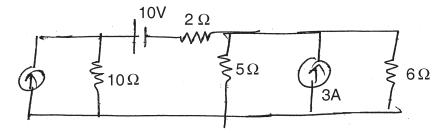

1) Determine the current through the  $5\Omega$  resistor using nodal analysis.



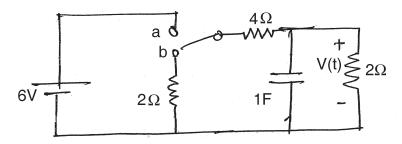
- 2) State and explain superposition theorem.
- 3) Find the values of R and C, so that  $V_x = 3V_y$ ,  $V_x$  and  $V_y$  are in quadrature.



- 4) Compare between Thevenin's theorem and Norton's theorem.
- 5) For the circuit shown, find the value of resistance  $R_{\rm L}$  for maximum power and calculate maximum power.







3. Attempt any two questions:

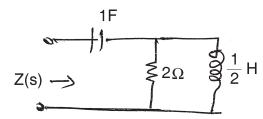
 $(6 \times 2 = 12)$ 

1) Using Thevenin's theorem, find the current through the  $6\Omega$  resistor.



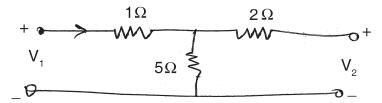
2) For the network shown below, the switch is moved from 'a' to 'b' at t = 0, find V(t).




- 3) Write a short note on:
  - a) Mesh and Nodal analysis.
  - b) Current and voltage source transformation.

SECTION - II

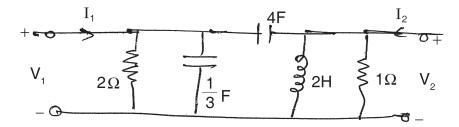
4. Attempt **any 4** questions:


 $(4 \times 4 = 16)$ 

- 1) With the help of neat diagram, explain working of band pass and band reject filter.
- 2) Find poles and zeros of the impedance of the following network and plot them on S-plane.



3) Derive condition for reciprocity for open circuit impedance parameter.


4) Find the transmission parameter for the network shown.



- 5) Explain how 2 port network can be represented by an equivalent T network.
- 5. Attempt any 2 questions:

 $(6 \times 2 = 12)$ 

1) Find Y parameter for shown network.



- 2) Draw and explain concept of notch filtering using RC and RL circuits.
- 3) Write a short note on:
  - a) ABCD parameter in term of Z parameter.
  - b) ABCD parameter in term of Y parameter.

\_\_\_\_

| Seat |  |
|------|--|
| No.  |  |

c) Becomes double

# S.E. (Biomedical Engg.) (Part – I) (Old CGPA) Examination, 2018 LINEAR CIRCUIT ANALYSIS

| Day and Date: Tuesday, 8-5-2018<br>Time: 2.30 p.m. to 5.30 p.m.                                                                                                                                                                 |                                                                                                      |                                                                                                                                                                              |                                                     | Total Marks                       | : 70                                                                                 |      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|-----------------------------------|--------------------------------------------------------------------------------------|------|
|                                                                                                                                                                                                                                 | 1                                                                                                    | 2)                                                                                                                                                                           | carries <b>one</b> mark.<br><b>Answer MCQ/Obj</b> e | swer Book Page<br>ective type que | the solved in first No. 3. Each question estions on Page No. 3 D.P. Set (P/Q/R/S) on |      |
|                                                                                                                                                                                                                                 |                                                                                                      |                                                                                                                                                                              | MCQ/Objective                                       | Type Question                     | S                                                                                    |      |
| Dura                                                                                                                                                                                                                            | atio                                                                                                 | n : 30 Minutes                                                                                                                                                               |                                                     |                                   | Marks                                                                                | : 14 |
| 1.                                                                                                                                                                                                                              |                                                                                                      | noose the correct<br>In series R – L ci                                                                                                                                      | answer :<br>rcuit, power factor                     | can be defined                    | (1×14=                                                                               | =14) |
|                                                                                                                                                                                                                                 |                                                                                                      | a) R/Z                                                                                                                                                                       | b) P/S                                              | c) V <sub>/</sub> /V              | d) All above                                                                         |      |
|                                                                                                                                                                                                                                 | 2)                                                                                                   | Superposition the                                                                                                                                                            | eorem is not applic                                 | able for                          |                                                                                      |      |
|                                                                                                                                                                                                                                 |                                                                                                      | a) Current calcu                                                                                                                                                             | lation                                              | b) Voltage calculation            |                                                                                      |      |
|                                                                                                                                                                                                                                 |                                                                                                      | c) Power calcula                                                                                                                                                             | ation                                               | d) Energy calculation             |                                                                                      |      |
|                                                                                                                                                                                                                                 | 3)                                                                                                   | 3) A circuit with a resistor, inductor and capacitor in series is resonant at f <sub>0</sub> Hz. If all the components values are now doubled, the new resonant frequency is |                                                     |                                   |                                                                                      |      |
|                                                                                                                                                                                                                                 |                                                                                                      | a) 2f <sub>0</sub>                                                                                                                                                           | b) f <sub>o</sub>                                   | c) $f_0/4$                        | d) f <sub>0</sub> /2                                                                 |      |
|                                                                                                                                                                                                                                 | 4) In a series R-L-C circuit, R = $2k\Omega$ , L = 1H, C = $1/400~\mu f$ . The resonant frequency is |                                                                                                                                                                              |                                                     |                                   |                                                                                      |      |
|                                                                                                                                                                                                                                 |                                                                                                      | a) $2 \times 10^4 \text{ Hz}$                                                                                                                                                |                                                     | c) 10 <sup>4</sup> Hz             | d) $2\pi \times 10^4 \text{ Hz}$                                                     |      |
| 5) A network contains only an independent current source and resistors. If the values of all resistors are doubled. The value of the node voltages were supported to the contains of the contains and the contains are doubled. |                                                                                                      |                                                                                                                                                                              |                                                     |                                   |                                                                                      |      |
|                                                                                                                                                                                                                                 |                                                                                                      | a) Becomes half                                                                                                                                                              | :                                                   | b) Remain u                       | nchanged                                                                             |      |

d) None of the above

| 6)  | is                                                   | s not a bilateral.                                   |                                                       |                                                      |
|-----|------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------|
|     | a) Resistor                                          | b) Diode                                             | c) Capacitor                                          | d) Inductor                                          |
| 7)  | In active filter,                                    | elem                                                 | ent is absent.                                        |                                                      |
|     | a) Inductor                                          |                                                      | b) Capacitor                                          |                                                      |
|     | c) Both a) and b)                                    |                                                      | d) Resistor                                           |                                                      |
| 8)  | Reactive power dra                                   | wn by a pure resi                                    | stor is                                               |                                                      |
|     | a) 0                                                 |                                                      | b) Minimum                                            |                                                      |
|     | c) Maximum                                           |                                                      | d) Average                                            |                                                      |
| 9)  | Under resonance c                                    | ondition, the powe                                   | er factor of a syst                                   | em is                                                |
|     | a) Unity                                             | b) Lagging                                           | c) Leading                                            | d) Any of above                                      |
| 10) | In an AC circuit cor<br>120V, 50Hz, while t          | • .                                                  |                                                       | • • •                                                |
|     | a) 35 mH                                             | b) 34 mH                                             | c) 30 mH                                              | d) 38 mH                                             |
| 11) | In 2 port network, Z                                 | $Z_{12} = Z_{21}$ indicates                          | I                                                     | oroperty.                                            |
|     | a) Unilateral                                        |                                                      |                                                       |                                                      |
| 12) | Advantage of active                                  | e filter is                                          |                                                       |                                                      |
|     | a) Do not offer aga                                  | in                                                   | b) Easy to tune                                       |                                                      |
|     | c) Both a) and b)                                    |                                                      | d) Derive high in                                     | mpedance load                                        |
| 13) | Number of an ideal especially for casca              |                                                      | •                                                     | ncies in pass band<br>_                              |
|     | a) Zero                                              | b) Unity                                             | c) Infinity                                           | d) Unpredictable                                     |
| 14) | A 2 port network is terminated in a 25Ω              |                                                      |                                                       |                                                      |
|     | a) $\begin{bmatrix} 20 & 2 \\ 40 & 10 \end{bmatrix}$ | b) $\begin{bmatrix} 20 & 40 \\ 2 & 10 \end{bmatrix}$ | c) $\begin{bmatrix} 10 & 40 \\ 10 & 20 \end{bmatrix}$ | d) $\begin{bmatrix} 20 & 2 \\ 10 & 40 \end{bmatrix}$ |

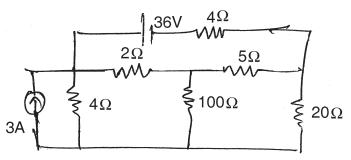


| Seat |  |
|------|--|
| No.  |  |

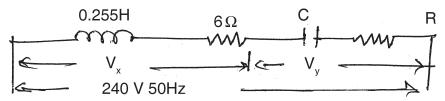
## S.E. (Biomedical Engg.) (Part – I) (Old CGPA) Examination, 2018 LINEAR CIRCUIT ANALYSIS

Day and Date: Tuesday, 8-5-2018

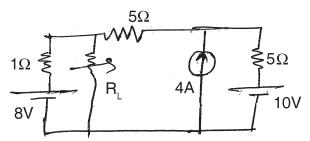
esday, 8-5-2018 Marks : 56


Time: 2.30 p.m. to 5.30 p.m.

#### SECTION - I


### 2. Attempt any 4 questions:

 $(4 \times 4 = 16)$ 

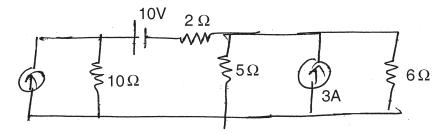

1) Determine the current through the  $5\Omega$  resistor using nodal analysis.



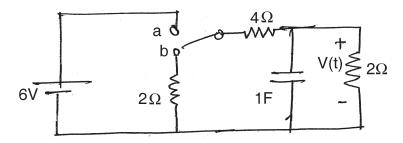
- 2) State and explain superposition theorem.
- 3) Find the values of R and C, so that  $V_x = 3V_y$ ,  $V_x$  and  $V_y$  are in quadrature.



- 4) Compare between Thevenin's theorem and Norton's theorem.
- 5) For the circuit shown, find the value of resistance  $R_{\rm L}$  for maximum power and calculate maximum power.







3. Attempt any two questions:

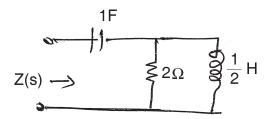
 $(6 \times 2 = 12)$ 

1) Using Thevenin's theorem, find the current through the  $6\Omega$  resistor.



2) For the network shown below, the switch is moved from 'a' to 'b' at t = 0, find V(t).

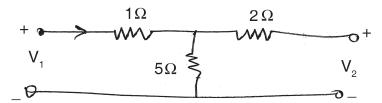



- 3) Write a short note on:
  - a) Mesh and Nodal analysis.
  - b) Current and voltage source transformation.

SECTION - II

4. Attempt any 4 questions:

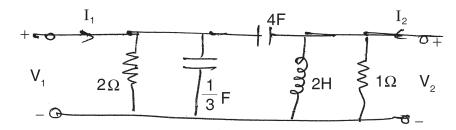
 $(4 \times 4 = 16)$ 


- 1) With the help of neat diagram, explain working of band pass and band reject filter.
- 2) Find poles and zeros of the impedance of the following network and plot them on S-plane.



3) Derive condition for reciprocity for open circuit impedance parameter.




4) Find the transmission parameter for the network shown.



- 5) Explain how 2 port network can be represented by an equivalent T network.
- 5. Attempt any 2 questions:

 $(6 \times 2 = 12)$ 

1) Find Y parameter for shown network.



- 2) Draw and explain concept of notch filtering using RC and RL circuits.
- 3) Write a short note on:
  - a) ABCD parameter in term of Z parameter.
  - b) ABCD parameter in term of Y parameter.

| Seat | 0.4 | П |
|------|-----|---|
| No.  | Set |   |

## S.E. (Biomedical Engineering) (Part – I) (Old) Examination, 2018 ELECTRICAL NETWORK ANALYSIS AND SYNTHESIS

Day and Date: Saturday, 12-5-2018 Total Marks: 100

Time: 2.30 p.m. to 5.30 p.m.

Instructions: 1) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book Page No. 3. Each question carries one mark.

2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

|         |                                    | MCQ/Objective T         | vpe Questions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                   |
|---------|------------------------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|
| Duratio | n : 30 Minutes                     | •                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Marks : 20                        |
| 1. Fill | in the blanks:                     |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (1×20=20)                         |
| 1)      | flow of electric cur               | rent through it.        | substance due to w c) Inductance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | which it opposes the d) Impedance |
| 2)      | is the p                           | property of a coil the  | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ange in the amount                |
| 3)      | An element which as ele            | is a source of election | , .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | al energy is termed               |
| 4)      | Ais any                            | closed part of th       | e circuit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                   |
|         | a) Mesh                            | b) Node                 | c) Branch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | d) Loop                           |
| 5)      | A is a connected together a) Node  | er.                     | o or more circuit electors or more circuit ele |                                   |
| 6)      | source                             | e with a parallel re    | sistance.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ed into an equivalent             |
|         | a) voltage                         | b) power                | c) current                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | d) watt                           |
| 7)      | Nodal analysis is to a) Kirchoff's |                         | current law.<br>c) Star delta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | d) Faradav                        |

| 8)  | phasors.                                                        |                                             |                                                  | be represented by    |
|-----|-----------------------------------------------------------------|---------------------------------------------|--------------------------------------------------|----------------------|
|     | a) voltages                                                     | b) power                                    | c) energy                                        | d) watts             |
| 9)  | A graph drawn on a intersect.                                   |                                             |                                                  |                      |
|     |                                                                 |                                             |                                                  | d) none of the above |
| 10) | Sub graph is a sub a) Nodes                                     |                                             |                                                  |                      |
| 11) | is 0 + order                                                    | _                                           | ·                                                | te incidence matrix  |
|     | a) n + b                                                        | b) n/b                                      | c) n×b                                           | d) n – b             |
| 12) | If excitation and resis known as the                            | =                                           |                                                  | he network function  |
|     | a) Transfer                                                     | b) Fourier                                  | c) Laplace                                       | d) Driving           |
| 13) | When a unit impuls supplied by the sou                          | urce is                                     |                                                  |                      |
|     | a) ∞                                                            | b) 1J                                       | c) ½J                                            | d) 0                 |
| 14) | The transfer funct ports.                                       | ion is used to de                           | escribe networks v                               | which have atleast   |
|     | a) 3                                                            | b) 4                                        | c) 1                                             | d) 2                 |
| 15) | As the poles of a n<br>a) remains consta<br>c) more oscillating |                                             | from the X-axis, the b) becomes less d) variable |                      |
| 16) | The transfer function                                           |                                             |                                                  |                      |
|     | a) (RCs) (1+ RCs)                                               | b) $\frac{1}{1+RCs}$                        | c) $\frac{RCs}{1+RCs}$                           | d) $\frac{s}{1+RCs}$ |
| 17) | For a 2 port symmorparameter C will be                          |                                             | twork, if A = 3 and                              | B = 1, the value of  |
|     | a) 4                                                            | b) 6                                        | c) 8                                             | d) 16                |
| 18) | For a two port netw<br>a) $z_{11} = z_{22}$                     | vork to be reciprod<br>b) $y_{12} = y_{21}$ |                                                  | d) AD = BC           |
| 19) | The number of roots                                             | of $s^3 + 5s^2 + 7s + 3 =$                  | = 0 in the left half of s                        | s-plane is           |
|     | a) zero                                                         | b) one                                      | c) two                                           | d) three             |
| 20) | The nodal method                                                |                                             |                                                  |                      |
|     | a) KVL and Ohm's                                                | aw                                          | b) KCL and Ohm                                   |                      |
|     | c) KCL and KVL                                                  |                                             | d) KCL, KVL and                                  | Ohm's low            |



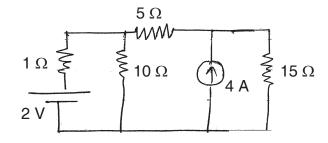
| Seat |  |
|------|--|
| No.  |  |

## S.E. (Biomedical Engineering) (Part – I) (Old) Examination, 2018 ELECTRICAL NETWORK ANALYSIS AND SYNTHESIS

Day and Date: Saturday, 12-5-2018 Marks: 80


Time: 2.30 p.m. to 5.30 p.m.

#### SECTION - I

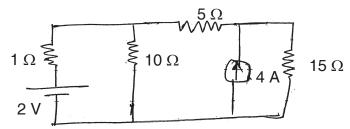

### 2. Attempt any four:

 $(4 \times 5 = 20)$ 

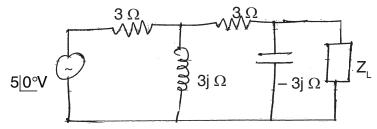
- 1) State and explain Kirchoff's current low and voltage low.
- 2) Find the current in  $4\Omega$  resistor.



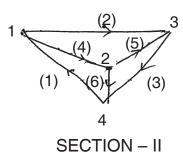
3) Find the current through 10  $\Omega$  resistor using mesh analysis.




- 4) Define and differentiate between nodal and mesh analysis.
- 5) State and explain superposition theorem.


### 3. Attempt any two:

 $(10 \times 2 = 20)$ 


1) State Norton's theorem and find current through 10  $\Omega$  resistor using it.



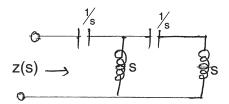
2) State maximum power transfer theorem and find the impedance  $Z_L$  so that maximum power can be transferred to it in the network of shown it.



- 3) For the graph shown, calculate:
  - a) incidence matrix
  - b) r-cutset matrix
  - c) f-circuit matrix.



### 4. Attempt any four:


 $(4 \times 5 = 20)$ 

- 1) Define following:
  - a) Current transfer function
  - b) Transfer impedance function.

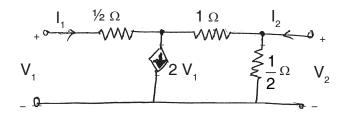
-5-



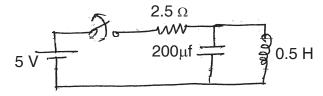
2) Determine the driving point impedance of given network.



- 3) Derive and explain condition for symmetry for z parameter.
- 4) State whether the following polynomial is Hurwitz or not.


a) 
$$s^4 + 4s^3 + 3s + 2$$

b) 
$$s^6 + 5s^5 + 4s^4 + 3s^3 + 2s^2 + s + 3$$
.


- 5) Mention any 4 properties of positive real function and its necessary and sufficient condition.
- 5. Attempt any two:

 $(10 \times 2 = 20)$ 

1) Obtain y and z parameter for given network.



2) In the network shown, switch is closed and steady state is attained. At t = 0, switch is opened. Determine current through the inductor.



3) Realize Foster forms of given LC impedance function.

$$z(s) = \frac{(s^2 + 1)(s^2 + 3)}{s(s^2 + 2)(s^2 + 4)}$$

Set P



| Seat | 0-4 | _ |
|------|-----|---|
| No.  | Set | Q |

# S.E. (Biomedical Engineering) (Part – I) (Old) Examination, 2018 ELECTRICAL NETWORK ANALYSIS AND SYNTHESIS

| Day and Date : Saturday, 12-5-2018<br>Time : 2.30 p.m. to 5.30 p.m. |                                                 |                                          |                                           | Total Marks: 100                                                                             |
|---------------------------------------------------------------------|-------------------------------------------------|------------------------------------------|-------------------------------------------|----------------------------------------------------------------------------------------------|
|                                                                     | ŕ                                               | minutes in Answerone mark.  Answer MCQ/O | er Book Page No. 3<br>bjective type que   | the solved in first 30 B. Each question carries stions on Page No. 3 B. Set (P/Q/R/S) on Top |
|                                                                     |                                                 | MCQ/Objective                            | Type Questions                            |                                                                                              |
| Duratio                                                             | on: 30 Minutes                                  |                                          |                                           | Marks : 20                                                                                   |
| 1. Fil                                                              | l in the blanks :                               |                                          |                                           | (1×20=20)                                                                                    |
| 1)                                                                  | The transfer fund                               | ction of a low pass                      | RC network is                             |                                                                                              |
|                                                                     | a) (RCs) (1+ RC                                 | (cs) b) $\frac{1}{1+RCs}$                | s RC network is<br>c) $\frac{RCs}{1+RCs}$ | d) $\frac{s}{1+RCs}$                                                                         |
| 2)                                                                  | For a 2 port symparameter C will                |                                          | network, if A = 3 ar                      | and $B = 1$ , the value of                                                                   |
|                                                                     | a) 4                                            | b) 6                                     | c) 8                                      | d) 16                                                                                        |
| 3)                                                                  | For a two port ne                               | etwork to be recip                       | rocal                                     |                                                                                              |
| 4.5                                                                 |                                                 |                                          | c) $h_{21} = -h_{12}$                     |                                                                                              |
| 4)                                                                  | <ul><li>The number of roo<br/>a) zero</li></ul> |                                          | 3 = 0 in the left half of c) two          | of s-plane is<br>d) three                                                                    |
| 5)                                                                  | The nodal metho                                 | od of circuit analys                     | sis is based on<br>b) KCL and Oh          |                                                                                              |
|                                                                     | c) KCL and KVL                                  | -                                        | d) KCL, KVL ar                            | nd Ohm's low                                                                                 |
| 6)                                                                  |                                                 | s the property of a urrent through it.   | a substance due to                        | which it opposes the                                                                         |
|                                                                     | a) Capacitance                                  | b) Resistance                            | c) Inductance                             | d) Impedance                                                                                 |
| 7)                                                                  | of current flowing                              | • •                                      | that opposes any o                        | change in the amount                                                                         |
|                                                                     | a) Inductance                                   | h) Resistance                            | c) Canacitance                            | d) Impedance                                                                                 |

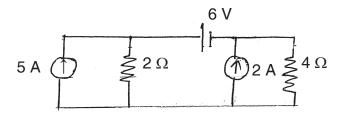
| 8   |                                                          |                    | trical signal of signa                           | al energy is termed   |
|-----|----------------------------------------------------------|--------------------|--------------------------------------------------|-----------------------|
|     | as eler<br>a) Passive                                    |                    | c) Series                                        | d) Parallel           |
| 9)  | A is any                                                 | •                  | •                                                | a) I alalio           |
| ٥)  | a) Mesh                                                  |                    |                                                  | d) Loop               |
| 10) | A is a j                                                 | junction where two | o or more circuit ele                            | ements are            |
|     | connected togethe                                        |                    |                                                  |                       |
|     | a) Node                                                  | b) Mesh            | c) Branch                                        | d) Loop               |
| 11) | A voltage source wi                                      |                    |                                                  | ed into an equivalent |
|     | a) voltage                                               |                    |                                                  | d) watt               |
| 40\ | _                                                        | · ·                | •                                                | u) watt               |
| 12) | Nodal analysis is based a) Kirchoff's                    |                    |                                                  | d) Faraday            |
| 40\ |                                                          |                    |                                                  |                       |
| 13) | A sinusoidal alterr                                      | nating current and | d can                                            | be represented by     |
|     | a) voltages                                              | b) power           | c) energy                                        | d) watts              |
| 14) |                                                          |                    |                                                  | vo branches do not    |
|     | a) 1-dimension                                           | b) 3-dimentional   | c) 2-dimentional                                 | d) none of the above  |
| 15) | Sub graph is a sub                                       | set of branches a  | nd of                                            | a graph.              |
|     | a) Nodes                                                 | b) Planers         | c) Meshes                                        | d) Loop               |
| 16) | is 0 + order                                             | _                  | •                                                | te incidence matrix   |
|     | a) n + b                                                 | b) n/b             | c) $n \times b$                                  | d) n – b              |
| 17) | If excitation and resis known as the                     |                    |                                                  | ne network function   |
|     | a) Transfer                                              | b) Fourier         | c) Laplace                                       | d) Driving            |
| 18) | When a unit impuls supplied by the so                    |                    |                                                  | of 1H, the energy     |
|     | a) ∞                                                     | b) 1J              | c) ½J                                            | d) 0                  |
| 19) | The transfer funct ports.                                | tion is used to de | escribe networks v                               | vhich have atleast    |
|     | a) 3                                                     | b) 4               | c) 1                                             | d) 2                  |
| 20) | As the poles of a na) remains consta c) more oscillating | nt                 | from the X-axis, the b) becomes less d) variable |                       |



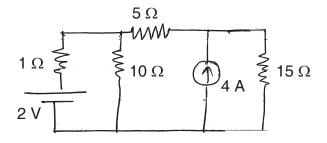
| Seat |  |
|------|--|
| No.  |  |

## S.E. (Biomedical Engineering) (Part – I) (Old) Examination, 2018 ELECTRICAL NETWORK ANALYSIS AND SYNTHESIS

Day and Date: Saturday, 12-5-2018 Marks: 80


Time: 2.30 p.m. to 5.30 p.m.

#### SECTION - I


#### 2. Attempt any four:

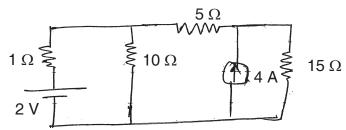
 $(4 \times 5 = 20)$ 

- 1) State and explain Kirchoff's current low and voltage low.
- 2) Find the current in  $4\Omega$  resistor.

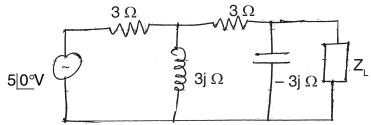


3) Find the current through 10  $\Omega$  resistor using mesh analysis.

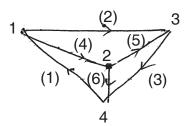



- 4) Define and differentiate between nodal and mesh analysis.
- 5) State and explain superposition theorem.




3. Attempt any two:

 $(10 \times 2 = 20)$ 


1) State Norton's theorem and find current through 10  $\Omega$  resistor using it.



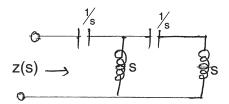
2) State maximum power transfer theorem and find the impedance  $Z_{L}$  so that maximum power can be transferred to it in the network of shown it.



- 3) For the graph shown, calculate:
  - a) incidence matrix
  - b) r-cutset matrix
  - c) f-circuit matrix.



SECTION - II


4. Attempt any four:

 $(4 \times 5 = 20)$ 

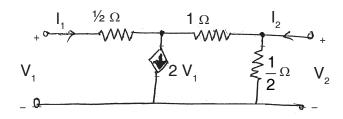
- 1) Define following:
  - a) Current transfer function
  - b) Transfer impedance function.



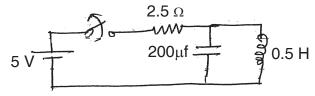
2) Determine the driving point impedance of given network.



- 3) Derive and explain condition for symmetry for z parameter.
- 4) State whether the following polynomial is Hurwitz or not.


a) 
$$s^4 + 4s^3 + 3s + 2$$

b) 
$$s^6 + 5s^5 + 4s^4 + 3s^3 + 2s^2 + s + 3$$
.


- 5) Mention any 4 properties of positive real function and its necessary and sufficient condition.
- 5. Attempt any two:

 $(10 \times 2 = 20)$ 

1) Obtain y and z parameter for given network.



2) In the network shown, switch is closed and steady state is attained. At t = 0, switch is opened. Determine current through the inductor.



3) Realize Foster forms of given LC impedance function.

$$z(s) = \frac{(s^2 + 1)(s^2 + 3)}{s(s^2 + 2)(s^2 + 4)}$$

|                                                            |                                                                                                                                              | SLR-TC -           | 439                  |
|------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------------------|
| Seat<br>No.                                                |                                                                                                                                              | Set                | R                    |
| •                                                          | ngineering) (Part – I) (Old) Ex<br>NETWORK ANALYSIS AND S                                                                                    | •                  | 3                    |
| Day and Date: Saturday, 12<br>Time: 2.30 p.m. to 5.30 p.m. |                                                                                                                                              | Total Marks        | : 100                |
| mii<br>ond<br>2) An<br>onl                                 | No. 1 is compulsory. It should nutes in Answer Book Page No. 3. e mark. swer MCQ/Objective type questly. Don't forget to mention, Q.P. Page. | Each question cal  | rries<br>o. 3        |
| Duration : 30 Minutes                                      | CQ/Objective Type Questions                                                                                                                  | Mark               | ks : 20              |
| is 0 + order                                               | nodes and 'b' branches, the comple                                                                                                           | ete incidence matr | <b>20=20)</b><br>rix |

| 2) | If excitation and resis known as thea) Transfer          | point funct            | ion. |                                                 | ne network function d) Driving |
|----|----------------------------------------------------------|------------------------|------|-------------------------------------------------|--------------------------------|
| 3) | When a unit impuls supplied by the so                    | •                      | ed   | to an inductor of                               | of 1H, the energy              |
|    | a) ∞                                                     | b) 1J                  | c)   | ½J                                              | d) 0                           |
| 4) | The transfer funct ports.                                | ion is used to de      | esci | ribe networks v                                 | vhich have atleast             |
|    | a) 3                                                     | b) 4                   | c)   | 1                                               | d) 2                           |
| 5) | As the poles of a na) remains constact) more oscillating | nt                     | b)   | m the X-axis, th<br>becomes less of<br>variable | •                              |
| 6) | The transfer function                                    | on of a low pass F     | RC i | network is                                      |                                |
|    | a) (RCs) (1+ RCs)                                        | b) $\frac{1}{1 + RCs}$ | c)   | RCs<br>1+RCs                                    | d) $\frac{s}{1+RCs}$           |
| 7) | For a 2 port symm                                        | etrical bilateral ne   | two  | ork, if $A = 3$ and                             | B = 1, the value of            |

c) 8

parameter C will be \_\_\_\_\_

a) 4

b) 6

d) 16

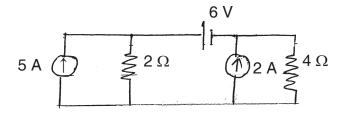
| 8)  | For a two port netv                     | vork to be reciprod        | cal                       |                       |
|-----|-----------------------------------------|----------------------------|---------------------------|-----------------------|
|     | a) $z_{11} = z_{22}$                    | b) $y_{12} = y_{21}$       | c) $h_{21} = -h_{12}$     | d) $AD = BC$          |
| 9)  | The number of roots                     | of $s^3 + 5s^2 + 7s + 3 =$ | = 0 in the left half of s | s-plane is            |
|     | a) zero                                 | b) one                     | c) two                    | d) three              |
| 10) | The nodal method                        | _                          |                           |                       |
|     | a) KVL and Ohm's                        | alaw                       | b) KCL and Ohm            | 's law                |
|     | c) KCL and KVL                          |                            | d) KCL, KVL and           | Ohm's low             |
| 11) |                                         |                            | ubstance due to w         | hich it opposes the   |
|     | flow of electric curr<br>a) Capacitance | _                          | c) Inductance             | d) Impedance          |
| 10\ |                                         |                            |                           |                       |
| 12) | of current flowing t                    |                            | at opposes any cha        | ange in the amount    |
|     | a) Inductance                           | =                          | c) Capacitance            | d) Impedance          |
| 13) | •                                       | •                          |                           | al energy is termed   |
| .0, | as eler                                 |                            | aroar orginal or orgin    | ar onergy to termou   |
|     | a) Passive                              |                            | c) Series                 | d) Parallel           |
| 14) | A is any                                | closed part of the         | e circuit.                |                       |
|     | a) Mesh                                 | b) Node                    | c) Branch                 | d) Loop               |
| 15) | A is a j                                | unction where two          | o or more circuit ele     | ements are            |
|     | connected togethe                       |                            |                           |                       |
|     | a) Node                                 | b) Mesh                    | c) Branch                 | d) Loop               |
| 16) | A voltage source wi                     |                            |                           | ed into an equivalent |
|     | a) voltage                              |                            |                           | d) watt               |
| 17) | Nodal analysis is b                     | ased on                    | current law.              |                       |
|     | a) Kirchoff's                           |                            |                           | d) Faraday            |
| 18) | A sinusoidal alterr phasors.            | nating current and         | d can                     | be represented by     |
|     | a) voltages                             | b) power                   | c) energy                 | d) watts              |
| 19) | A graph drawn on a intersect.           | a plane is sa              | aid to be planer if tv    | wo branches do not    |
|     | a) 1-dimension                          | b) 3-dimentional           | c) 2-dimentional          | d) none of the above  |
| 20) | Sub graph is a sub                      |                            |                           |                       |
|     | a) Nodes                                |                            |                           |                       |



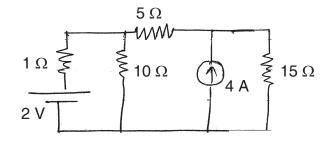
| Seat |  |
|------|--|
| No.  |  |

## S.E. (Biomedical Engineering) (Part – I) (Old) Examination, 2018 ELECTRICAL NETWORK ANALYSIS AND SYNTHESIS

Day and Date: Saturday, 12-5-2018 Marks: 80


Time: 2.30 p.m. to 5.30 p.m.

#### SECTION - I


2. Attempt any four:

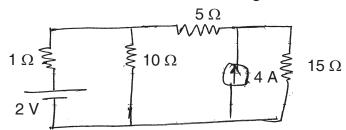
 $(4 \times 5 = 20)$ 

- 1) State and explain Kirchoff's current low and voltage low.
- 2) Find the current in  $4\Omega$  resistor.

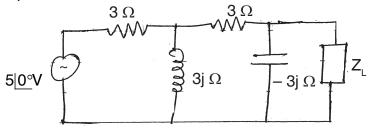


3) Find the current through 10  $\Omega$  resistor using mesh analysis.

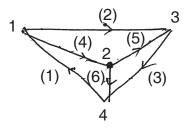



- 4) Define and differentiate between nodal and mesh analysis.
- 5) State and explain superposition theorem.




### 3. Attempt any two:

 $(10 \times 2 = 20)$ 


1) State Norton's theorem and find current through 10  $\Omega$  resistor using it.



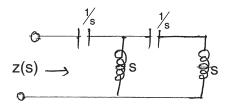
2) State maximum power transfer theorem and find the impedance  $Z_L$  so that maximum power can be transferred to it in the network of shown it.



- 3) For the graph shown, calculate:
  - a) incidence matrix
  - b) r-cutset matrix
  - c) f-circuit matrix.



SECTION - II


### 4. Attempt any four:

 $(4 \times 5 = 20)$ 

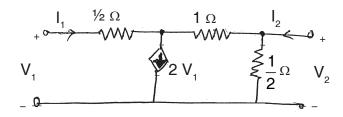
- 1) Define following:
  - a) Current transfer function
  - b) Transfer impedance function.



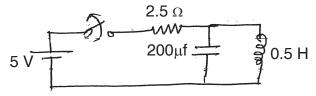
2) Determine the driving point impedance of given network.



- 3) Derive and explain condition for symmetry for z parameter.
- 4) State whether the following polynomial is Hurwitz or not.


a) 
$$s^4 + 4s^3 + 3s + 2$$

b) 
$$s^6 + 5s^5 + 4s^4 + 3s^3 + 2s^2 + s + 3$$
.


- 5) Mention any 4 properties of positive real function and its necessary and sufficient condition.
- 5. Attempt any two:

 $(10 \times 2 = 20)$ 

1) Obtain y and z parameter for given network.



2) In the network shown, switch is closed and steady state is attained. At t = 0, switch is opened. Determine current through the inductor.



3) Realize Foster forms of given LC impedance function.

$$z(s) = \frac{(s^2 + 1)(s^2 + 3)}{s(s^2 + 2)(s^2 + 4)}$$

|--|--|

| Seat | Cot |   |
|------|-----|---|
| No.  | Set | 5 |

## S.E. (Biomedical Engineering) (Part – I) (Old) Examination, 2018 ELECTRICAL NETWORK ANALYSIS AND SYNTHESIS

| •       | d Date : Saturday,<br>2.30 p.m. to 5.30 p |                                                                       |                                 | Total Marks                                                            | : 100         |
|---------|-------------------------------------------|-----------------------------------------------------------------------|---------------------------------|------------------------------------------------------------------------|---------------|
|         | 2) A                                      | <b>ninutes</b> in Answe<br><b>one</b> mark.<br><b>Answer MCQ/Ob</b> , | r Book Page No. 3.              | be solved in first Each question can stions on Page N Set (P/Q/R/S) on | rries<br>o. 3 |
| Duratio | on : 30 Minutes                           | MCQ/Objective                                                         | Type Questions                  | Mark                                                                   | ks : 20       |
| 1. Fill | in the blanks:                            |                                                                       |                                 | (1×2                                                                   | 0=20)         |
| 1)      | •                                         | rith a series resista<br>e with a parallel re                         |                                 | ted into an equivale                                                   | nt            |
|         | a) voltage                                |                                                                       | c) current                      | d) watt                                                                |               |
| 2)      | Nodal analysis is a) Kirchoff's           |                                                                       | _ current law.<br>c) Star delta | d) Faraday                                                             |               |
| 3)      | A sinusoidal alter phasors.               | nating current ar                                                     | nd car                          | n be represented b                                                     | ру            |
|         | a) voltages                               | b) power                                                              | c) energy                       | d) watts                                                               |               |
| 4)      | A graph drawn on intersect.               | a plane is                                                            | said to be planer if            | two branches do n                                                      | ot            |
|         | a) 1-dimension                            | b) 3-dimentiona                                                       | al c) 2-dimentiona              | l d) none of the a                                                     | oove          |
| 5)      | Sub graph is a su a) Nodes                |                                                                       | and c<br>c) Meshes              |                                                                        |               |
| 6)      | For a graph with 'r is 0 + order          |                                                                       | ranches, the comp               | lete incidence matr                                                    | ix            |
|         | a) n + b                                  | b) n/b                                                                | c) $n \times b$                 | d) n – b                                                               |               |
| 7)      | If excitation and re is known as the _    | •                                                                     | •                               | the network function                                                   | n             |
|         | a) Transfer                               | b) Fourier                                                            | c) Laplace                      | d) Driving                                                             |               |

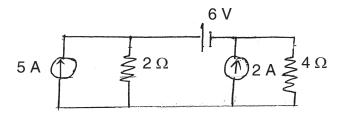
| SLR-TC - 439 -2- |                                                                |                                                              |                                                  |                                  |
|------------------|----------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------|----------------------------------|
| 8)               | When a unit impul supplied by the so                           |                                                              | ed to an inductor                                | of 1H, the energy                |
|                  | a) ∞                                                           | b) 1J                                                        | c) ½J                                            | d) 0                             |
| 9)               | The transfer function ports.                                   | tion is used to de                                           | escribe networks                                 | which have atleast               |
|                  | a) 3                                                           | b) 4                                                         | c) 1                                             | d) 2                             |
| 10)              | As the poles of a rank a) remains constant c) more oscillating | nt                                                           | from the X-axis, the b) becomes less d) variable | ne response<br>oscillating       |
| 11)              | The transfer functi                                            |                                                              |                                                  |                                  |
|                  | a) (RCs) (1+ RCs                                               | ) b) $\frac{1}{1 + RCs}$                                     | c) RCs<br>1+RCs                                  | d) $\frac{s}{1+RCs}$             |
| 12)              | For a 2 port symmometer C will be a) 4                         | e                                                            | twork, if A = 3 and c) 8                         | B = 1 ,the value of<br>d) 16     |
| 13)              | For a two port net                                             | ,                                                            | •                                                | - /                              |
| ,                | a) $z_{11} = z_{22}$                                           | •                                                            |                                                  | d) $AD = BC$                     |
| 14)              | The number of roots                                            | :                                                            |                                                  | s-plane is                       |
| ,                | a) zero                                                        |                                                              | c) two                                           | d) three                         |
| 15)              | The nodal method                                               | of circuit analysis                                          |                                                  |                                  |
|                  | a) KVL and Ohm'                                                | s law                                                        | b) KCL and Ohm                                   |                                  |
|                  | c) KCL and KVL                                                 |                                                              | d) KCL, KVL and                                  | l Ohm's low                      |
| 16)              | flow of electric cur                                           |                                                              | substance due to w                               | hich it opposes the              |
|                  | a) Capacitance                                                 | b) Resistance                                                | c) Inductance                                    | d) Impedance                     |
| 17)              | of current flowing                                             | through it.                                                  |                                                  | ange in the amount               |
|                  | a) Inductance                                                  | b) Resistance                                                | c) Capacitance                                   | d) Impedance                     |
| 18)              |                                                                |                                                              |                                                  | , .                              |
| .0)              | as ele                                                         | ment.                                                        |                                                  | nal energy is termed             |
| .0)              | as ele                                                         | ment.                                                        | trical signal of sign                            | nal energy is termed             |
|                  | as ele a) Passive A is any                                     | ment. b) Active closed part of th                            | c) Series<br>e circuit.                          | nal energy is termed d) Parallel |
| 19)              | as ele<br>a) Passive<br>A is any<br>a) Mesh                    | ment. b) Active closed part of th b) Node                    | c) Series<br>e circuit.<br>c) Branch             | d) Parallel d) Loop              |
| 19)              | as ele a) Passive A is any                                     | ment. b) Active closed part of th b) Node junction where two | c) Series<br>e circuit.<br>c) Branch             | d) Parallel d) Loop              |



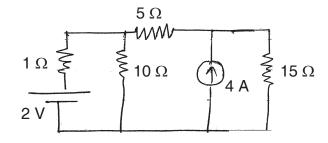
| Seat |  |
|------|--|
| No.  |  |

## S.E. (Biomedical Engineering) (Part – I) (Old) Examination, 2018 ELECTRICAL NETWORK ANALYSIS AND SYNTHESIS

Day and Date: Saturday, 12-5-2018 Marks: 80


Time: 2.30 p.m. to 5.30 p.m.

#### SECTION - I


### 2. Attempt any four:

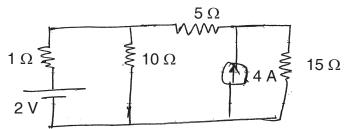
 $(4 \times 5 = 20)$ 

- 1) State and explain Kirchoff's current low and voltage low.
- 2) Find the current in  $4\Omega$  resistor.

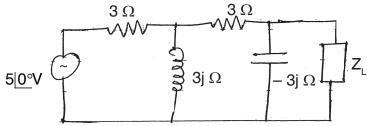


3) Find the current through 10  $\Omega$  resistor using mesh analysis.

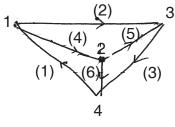



- 4) Define and differentiate between nodal and mesh analysis.
- 5) State and explain superposition theorem.




3. Attempt any two:

 $(10 \times 2 = 20)$ 


1) State Norton's theorem and find current through 10  $\Omega$  resistor using it.



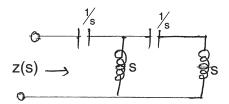
2) State maximum power transfer theorem and find the impedance  $Z_L$  so that maximum power can be transferred to it in the network of shown it.



- 3) For the graph shown, calculate:
  - a) incidence matrix
  - b) r-cutset matrix
  - c) f-circuit matrix.



SECTION - II


4. Attempt any four:

 $(4 \times 5 = 20)$ 

- 1) Define following:
  - a) Current transfer function
  - b) Transfer impedance function.

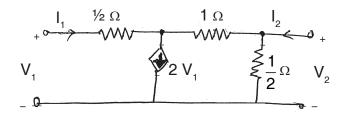


2) Determine the driving point impedance of given network.

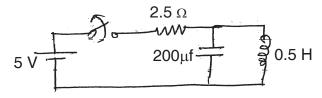


-5-

- 3) Derive and explain condition for symmetry for z parameter.
- 4) State whether the following polynomial is Hurwitz or not.


a) 
$$s^4 + 4s^3 + 3s + 2$$

b) 
$$s^6 + 5s^5 + 4s^4 + 3s^3 + 2s^2 + s + 3$$
.


- 5) Mention any 4 properties of positive real function and its necessary and sufficient condition.
- 5. Attempt any two:

 $(10 \times 2 = 20)$ 

1) Obtain y and z parameter for given network.



2) In the network shown, switch is closed and steady state is attained. At t = 0, switch is opened. Determine current through the inductor.



3) Realize Foster forms of given LC impedance function.

$$z(s) = \frac{(s^2 + 1)(s^2 + 3)}{s(s^2 + 2)(s^2 + 4)}$$

| Seat | _   |   |
|------|-----|---|
| No.  | Set | Р |
|      |     | _ |

## S.E. (Part – II) (Biomedical Engg.) (New CBCS) Examination, 2018 TRANSDUCER IN BIOMEDICAL INSTRUMENTATION

Day and Date: Tuesday, 15-5-2018 Max. Marks: 70

Time: 10.00 a.m. to 1.00 p.m.

- Instructions: 1) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book Page No. 3. Each question carries one mark.
  - 2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

## **MCQ/Objective Type Questions**

|         |                                 | MCQ/Objective i                  | ype Questions                                           |                               |
|---------|---------------------------------|----------------------------------|---------------------------------------------------------|-------------------------------|
| Duratio | on: 30 Minutes                  | -                                |                                                         | Marks : 14                    |
| 1. Ch   | oose the correct ar             | iswer:                           |                                                         | (14×1=14)                     |
| 1)      | the measuring sys               | tem does not resp                | •                                                       | ut quantity to which d) Error |
| 2)      | they measure an o               | bject without med                |                                                         | transducers as d) Inductive   |
| 3)      |                                 | , the surfa<br>allic electrodes. |                                                         | ge accumulates are            |
| 4)      | Standard electrode a) Voltage   |                                  |                                                         | rement of d) Deposited ion    |
| 5)      | redox reaction. a) Amperometric |                                  |                                                         | ns produced during d) Optical |
| 6)      | a) LED                          |                                  | tical sensor.<br>c) Transistor                          | d) All of above               |
| 7)      |                                 | placement                        | e in bourdon tubes. b) Pressure to vo d) Pressure to fo | oltage                        |

a) Systematic b) Gross c) Random d) Kinetic

14) \_\_\_\_\_error is caused by careless handling.



| Seat |  |
|------|--|
| No.  |  |

## S.E. (Part – II) (Biomedical Engg.) (New CBCS) Examination, 2018 TRANSDUCER IN BIOMEDICAL INSTRUMENTATION

Day and Date: Tuesday, 15-5-2018 Marks: 56

Time: 10.00 a.m. to 1.00 p.m.

#### SECTION - I

#### 2. Attempt any four questions:

 $(4 \times 4 = 16)$ 

- 1) Distinguish between: (a) passive and active transducer (b) static and dynamic characteristics.
- 2) Define the dynamic error of a first order system and derive the expression for the same when it is subjected to standard input signals.
- 3) Define gauge factor and distinguish between bonded and unbonded strain gauges.
- 4) With the help of diagram explain electrode electrolyte interface and define half cell potential.
- 5) Explain working of LVDT with the help of neat diagram.

### 3. Attempt any two questions:

 $(6 \times 2 = 12)$ 

- 1) Define motion artifacts. Explain various types of body surface electrodes with their application.
- 2) Write a short note on: (a) types of diaphragms (b) types and material of belows (c) types of bourdon tubes.
- 3) Describe construction, working and application of microelectrodes.

#### SECTION - II

### 4. Attempt any four questions :

 $(4 \times 4 = 16)$ 

- 1) Define pH and describe working of pH electrode.
- 2) Describe designing principles in fabrication of fiber optic sensors.
- 3) Explain physiology of acid base balance and blood gas analysis.
- 4) Explain significance of O<sub>2</sub> cell and mention its applications.
- 5) Describe transconduction phenomenon for biosensor.



5. Attempt any two questions:

 $(6 \times 2 = 12)$ 

- 1) Write a short note on:
  - a) Working and construction of amperometric sensor.
  - b) Catalytic biosensor.
- 2) Explain how fiber optic sensors are designed for measuring following variables :
  - a) temperature
  - b) pressure
- 3) With the help of diagram explain working of ISFET's.

| Seat |    |
|------|----|
| No.  | Se |

# S.E. (Part – II) (Biomedical Engg.) (New CBCS) Examination, 2018 TRANSDUCER IN BIOMEDICAL INSTRUMENTATION

Day and Date: Tuesday, 15-5-2018 Max. Marks: 70

Time: 10.00 a.m. to 1.00 p.m.

Instructions: 1) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book Page No. 3. Each question carries one mark.

2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

|         |                                                                    | MCQ/Objective      | Туре | e Questions                                             |           |
|---------|--------------------------------------------------------------------|--------------------|------|---------------------------------------------------------|-----------|
| Duratio | n : 30 Minutes                                                     | -                  |      |                                                         | Marks: 14 |
| 1. Ch   | oose the correct ar                                                | nswer:             |      |                                                         | (14×1=14) |
| 1)      | a) Displacement c) Moisture                                        | intities cannot be | b)   | asured by capacitive transo<br>Speed<br>None of above   | ducers.   |
| 2)      | des<br>different metals.<br>a) Peltier effect<br>c) Seebeck effect |                    | b)   | tween two junctions forme Thomson effect None of above  | d by two  |
| 3)      | strain applied.                                                    |                    | b)   | e developed is<br>Inversely proportional<br>Independent | to        |
| 4)      | cell                                                               | -                  |      | ght, the resistance of pho<br>Remains same d) Separa    |           |
| 5)      | a) Strain gauge c) LVDT                                            | resents active tra | b)   | ucer.<br>Thermister<br>Thermo couple                    |           |
| 6)      | Capacitive transdoman Static measures c) Transient measures        | ment               | •    | Dynamic measurement<br>Both a) and b)                   | P.T.O.    |

10) Quartz is an \_\_\_\_\_, the surfaces on which charge accumulates are provided with metallic electrodes. a) Conductor b) Insulator c) Capacitor d) None of above 11) Standard electrode potential for any half cell is measurement of a) Voltage b) lons apart c) Radii of ions d) Deposited ion 12) \_\_\_\_\_ biosensors use the movement of electrons produced during redox reaction. a) Amperometric b) Potentiometric c) Piezoelectric d) Optical 13) \_\_\_\_\_ acts as detector in optical sensor. b) Photo diode c) Transistor a) LED d) All of above 14) \_\_\_\_\_ conversion take place in bourdon tubes. a) Pressure to displacement b) Pressure to voltage c) Pressure to strain d) Pressure to force



| Seat |  |
|------|--|
| No.  |  |

# S.E. (Part – II) (Biomedical Engg.) (New CBCS) Examination, 2018 TRANSDUCER IN BIOMEDICAL INSTRUMENTATION

Day and Date: Tuesday, 15-5-2018 Marks: 56

Time: 10.00 a.m. to 1.00 p.m.

#### SECTION - I

## 2. Attempt any four questions :

 $(4 \times 4 = 16)$ 

- 1) Distinguish between: (a) passive and active transducer (b) static and dynamic characteristics.
- 2) Define the dynamic error of a first order system and derive the expression for the same when it is subjected to standard input signals.
- 3) Define gauge factor and distinguish between bonded and unbonded strain gauges.
- 4) With the help of diagram explain electrode electrolyte interface and define half cell potential.
- 5) Explain working of LVDT with the help of neat diagram.

## 3. Attempt any two questions:

 $(6 \times 2 = 12)$ 

- 1) Define motion artifacts. Explain various types of body surface electrodes with their application.
- 2) Write a short note on: (a) types of diaphragms (b) types and material of belows (c) types of bourdon tubes.
- 3) Describe construction, working and application of microelectrodes.

### SECTION - II

## 4. Attempt any four questions :

- 1) Define pH and describe working of pH electrode.
- 2) Describe designing principles in fabrication of fiber optic sensors.
- 3) Explain physiology of acid base balance and blood gas analysis.
- 4) Explain significance of O<sub>2</sub> cell and mention its applications.
- 5) Describe transconduction phenomenon for biosensor.



5. Attempt any two questions:

- 1) Write a short note on:
  - a) Working and construction of amperometric sensor.
  - b) Catalytic biosensor.
- 2) Explain how fiber optic sensors are designed for measuring following variables :
  - a) temperature
  - b) pressure
- 3) With the help of diagram explain working of ISFET's.

| SI | $_{R}$ | -Т | C | _ | 44 | 0 |
|----|--------|----|---|---|----|---|
|----|--------|----|---|---|----|---|



| Seat |  |
|------|--|
| No.  |  |

Set



# S.E. (Part – II) (Biomedical Engg.) (New CBCS) Examination, 2018 TRANSDUCER IN BIOMEDICAL INSTRUMENTATION

Day and Date: Tuesday, 15-5-2018 Max. Marks: 70

Time: 10.00 a.m. to 1.00 p.m.

- Instructions: 1) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book Page No. 3. Each question carries one mark.
  - 2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

## **MCQ/Objective Type Questions**

| Dui | ratio | on : 30 Minutes                                         |                                       | Marks: 14 |  |
|-----|-------|---------------------------------------------------------|---------------------------------------|-----------|--|
| 1.  | Ch    | oose the correct answer :                               |                                       | (14×1=14) |  |
|     | 1)    | biosensors use                                          | the movement of electrons produced    | during    |  |
|     |       | redox reaction.                                         |                                       |           |  |
|     |       | a) Amperometric b) Potenti                              | ometric c) Piezoelectric d) Optical   |           |  |
|     | 2)    | acts as detecto                                         |                                       |           |  |
|     |       | a) LED b) Photo of                                      | diode c) Transistor d) All of all     | bove      |  |
|     | 3)    | conversion take                                         | e place in bourdon tubes.             |           |  |
|     |       | a) Pressure to displacement                             | b) Pressure to voltage                |           |  |
|     |       | c) Pressure to strain                                   | d) Pressure to force                  |           |  |
|     | 4)    | quantities cann                                         | ot be measured by capacitive transd   | ucers.    |  |
|     |       |                                                         | b) Speed                              |           |  |
|     |       | c) Moisture                                             | d) None of above                      |           |  |
|     | 5)    | describes curre                                         | ent flow between two junctions formed | by two    |  |
|     | ,     | different metals.                                       | •                                     | •         |  |
|     |       | a) Peltier effect                                       | b) Thomson effect                     |           |  |
|     |       | c) Seebeck effect                                       | d) None of above                      |           |  |
|     | 6)    | In piezoelectric strain transducer voltage developed is |                                       |           |  |
|     |       | strain applied.                                         |                                       |           |  |
|     |       | • •                                                     | b) Inversely proportional             |           |  |
|     |       | c) Equal                                                |                                       |           |  |

| 7)  | With the increase cell | -                  |      |                  |      | •                |
|-----|------------------------|--------------------|------|------------------|------|------------------|
|     | a) Increases           | b) Decreases       | c)   | Remains same     | d)   | Separates        |
| 8)  | repr                   |                    |      |                  |      |                  |
|     | a) Strain gauge        |                    | b)   | Thermister       |      |                  |
|     | c) LVDT                |                    | d)   | Thermo couple    |      |                  |
| 9)  | Capacitive transdu     |                    |      |                  |      |                  |
|     | a) Static measurer     | ment               | b)   | Dynamic meas     | ure  | ment             |
|     | c) Transient meas      | urement            | d)   | Both a) and b)   |      |                  |
| 10) | error                  |                    |      |                  |      |                  |
|     | a) Systematic          | b) Gross           | c)   | Random           | d)   | Kinetic          |
| 11) | is defir               | ned as the largest | cha  | arge in the inpu | t qı | uantity to which |
|     | the measuring syst     | •                  |      |                  |      |                  |
|     | a) Drift               | b) Resolution      | c)   | Dead band        | d)   | Error            |
| 12) | Capacitive transdu     | icers are also cal | lled | as               |      | transducers as   |
|     | they measure an o      | •                  |      | . •              |      |                  |
|     | a) Proximity           | b) Invasive        | c)   | Loading          | d)   | Inductive        |
| 13) | Quartz is an           |                    | ices | on which charg   | je a | ccumulates are   |
|     | provided with meta     |                    |      |                  |      |                  |
|     | a) Conductor           |                    | b)   | Insulator        |      |                  |
|     | c) Capacitor           |                    | d)   | None of above    |      |                  |
| 14) | Standard electrode     |                    |      |                  |      |                  |
|     | a) Voltage             | b) Ions apart      | c)   | Radii of ions    | d)   | Deposited ion    |
|     |                        |                    |      |                  |      |                  |



| Seat |  |
|------|--|
| No.  |  |

# S.E. (Part – II) (Biomedical Engg.) (New CBCS) Examination, 2018 TRANSDUCER IN BIOMEDICAL INSTRUMENTATION

Day and Date: Tuesday, 15-5-2018 Marks: 56

Time: 10.00 a.m. to 1.00 p.m.

#### SECTION - I

## 2. Attempt any four questions :

 $(4 \times 4 = 16)$ 

- 1) Distinguish between: (a) passive and active transducer (b) static and dynamic characteristics.
- 2) Define the dynamic error of a first order system and derive the expression for the same when it is subjected to standard input signals.
- 3) Define gauge factor and distinguish between bonded and unbonded strain gauges.
- 4) With the help of diagram explain electrode electrolyte interface and define half cell potential.
- 5) Explain working of LVDT with the help of neat diagram.

## 3. Attempt any two questions:

 $(6 \times 2 = 12)$ 

- 1) Define motion artifacts. Explain various types of body surface electrodes with their application.
- 2) Write a short note on: (a) types of diaphragms (b) types and material of belows (c) types of bourdon tubes.
- 3) Describe construction, working and application of microelectrodes.

### SECTION - II

## 4. Attempt any four questions :

- 1) Define pH and describe working of pH electrode.
- 2) Describe designing principles in fabrication of fiber optic sensors.
- 3) Explain physiology of acid base balance and blood gas analysis.
- 4) Explain significance of O<sub>2</sub> cell and mention its applications.
- 5) Describe transconduction phenomenon for biosensor.



5. Attempt any two questions:

- 1) Write a short note on:
  - a) Working and construction of amperometric sensor.
  - b) Catalytic biosensor.
- 2) Explain how fiber optic sensors are designed for measuring following variables :
  - a) temperature
  - b) pressure
- 3) With the help of diagram explain working of ISFET's.

| Seat |  |
|------|--|
| No.  |  |

Set

S

# S.E. (Part – II) (Biomedical Engg.) (New CBCS) Examination, 2018 TRANSDUCER IN BIOMEDICAL INSTRUMENTATION

| •       | d Date : Tuesday,<br>10.00 a.m. to 1.00              |                                                                              |                                                                  | Max. Marks: 70      |
|---------|------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------|---------------------|
| 1       | 2)                                                   | <b>30 minutes</b> in And<br>carries <b>one</b> mark.<br><b>Answer MCQ/Ob</b> |                                                                  |                     |
|         |                                                      | MCQ/Objective                                                                | Type Questions                                                   |                     |
| Duratio | n : 30 Minutes                                       | •                                                                            | ,                                                                | Marks: 14           |
| 1. Ch   | oose the correct a                                   | nswer :                                                                      |                                                                  | (14×1=14)           |
| 1)      | In piezoelectric si strain applied.                  | train transducer vo                                                          | oltage developed is                                              | to                  |
|         | <ul><li>a) Directly propo</li><li>c) Equal</li></ul> | rtional                                                                      | <ul><li>b) Inversely proportion</li><li>d) Independent</li></ul> | ortional            |
| 2)      | With the increase cell                               | e in the intensity                                                           | of light, the resistar                                           | nce of photovoltaic |
|         | a) Increases                                         | b) Decreases                                                                 | c) Remains same                                                  | d) Separates        |
| 3)      | a) Strain gauge c) LVDT                              | presents active tra                                                          | nsducer.<br>b) Thermister<br>d) Thermo couple                    |                     |
| 4)      | a) Static measur                                     |                                                                              | b) Dynamic meas<br>d) Both a) and b)                             | urement             |
| 5)      | erro                                                 | or is caused by ca                                                           | reless handling.                                                 |                     |
|         | a) Systematic                                        | b) Gross                                                                     | c) Random                                                        | d) Kinetic          |
| 6)      |                                                      | _                                                                            | st charge in the inpu                                            | t quantity to which |
|         | a) Drift                                             | stem does not res<br>b) Resolution                                           | c) Dead band                                                     | d) Error            |

| 7)  | Capacitive transducers are also cal<br>they measure an object without med                | led as transducers as                                             |
|-----|------------------------------------------------------------------------------------------|-------------------------------------------------------------------|
|     | a) Proximity b) Invasive                                                                 | . •                                                               |
| 8)  | Quartz is an, the surfator provided with metallic electrodes.  a) Conductor c) Capacitor | ces on which charge accumulates are b) Insulator d) None of above |
| 9)  | Standard electrode potential for any                                                     |                                                                   |
|     | a) Voltage b) Ions apart                                                                 | c) Radii of ions d) Deposited ion                                 |
| 10) | biosensors use the mo                                                                    | ovement of electrons produced during                              |
|     | redox reaction.                                                                          |                                                                   |
|     | a) Amperometric b) Potentiometric                                                        | cc) Piezoelectric d) Optical                                      |
| 11) | acts as detector in opt                                                                  | tical sensor.                                                     |
|     | a) LED b) Photo diode                                                                    | c) Transistor d) All of above                                     |
| 12) | conversion take place                                                                    | in bourdon tubes.                                                 |
|     | a) Pressure to displacement                                                              | b) Pressure to voltage                                            |
|     | c) Pressure to strain                                                                    | d) Pressure to force                                              |
| 13) | quantities cannot be n                                                                   | neasured by capacitive transducers.                               |
|     | a) Displacement                                                                          | b) Speed                                                          |
|     | c) Moisture                                                                              | d) None of above                                                  |
| 14) | describes current flow                                                                   | between two junctions formed by two                               |
|     | different metals.                                                                        |                                                                   |
|     | a) Peltier effect                                                                        | b) Thomson effect                                                 |
|     | c) Seebeck effect                                                                        | d) None of above                                                  |



| Seat |  |
|------|--|
| No.  |  |

# S.E. (Part – II) (Biomedical Engg.) (New CBCS) Examination, 2018 TRANSDUCER IN BIOMEDICAL INSTRUMENTATION

Day and Date: Tuesday, 15-5-2018 Marks: 56

Time: 10.00 a.m. to 1.00 p.m.

#### SECTION - I

## 2. Attempt any four questions :

 $(4 \times 4 = 16)$ 

- 1) Distinguish between: (a) passive and active transducer (b) static and dynamic characteristics.
- 2) Define the dynamic error of a first order system and derive the expression for the same when it is subjected to standard input signals.
- 3) Define gauge factor and distinguish between bonded and unbonded strain gauges.
- 4) With the help of diagram explain electrode electrolyte interface and define half cell potential.
- 5) Explain working of LVDT with the help of neat diagram.

## 3. Attempt any two questions:

 $(6 \times 2 = 12)$ 

- 1) Define motion artifacts. Explain various types of body surface electrodes with their application.
- 2) Write a short note on: (a) types of diaphragms (b) types and material of belows (c) types of bourdon tubes.
- 3) Describe construction, working and application of microelectrodes.

### SECTION - II

## 4. Attempt any four questions :

- 1) Define pH and describe working of pH electrode.
- 2) Describe designing principles in fabrication of fiber optic sensors.
- 3) Explain physiology of acid base balance and blood gas analysis.
- 4) Explain significance of O<sub>2</sub> cell and mention its applications.
- 5) Describe transconduction phenomenon for biosensor.



5. Attempt any two questions:

- 1) Write a short note on:
  - a) Working and construction of amperometric sensor.
  - b) Catalytic biosensor.
- 2) Explain how fiber optic sensors are designed for measuring following variables :
  - a) temperature
  - b) pressure
- 3) With the help of diagram explain working of ISFET's.

| Seat |  |
|------|--|
| No.  |  |

Set P

# S.E. (Biomedical Engineering) (Part – II) (New CBCS) Examination, 2018 BIOMEDICAL PROSTHETIC AND ORTHOTICS

| DIGINI25107(21110011                                                 |                                                                                                                                                          |
|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Day and Date : Thursday, 17-5-2018<br>Time : 10.00 a.m. to 1.00 p.m. | Max. Marks: 70                                                                                                                                           |
| minutes in Answ<br>carries one mark.<br>2) Answer MCQ/OL             | pulsory. It should be solved in first 30 per Book on Page No. 3. Each question pjective type questions on Page No. get to mention, Q.P. Set (P/Q/R/S) on |
| MCQ/Objective                                                        | Type Questions                                                                                                                                           |
| Duration: 30 Minutes                                                 | Marks: 14                                                                                                                                                |
| 1. Choose the correct answer:                                        | (14×1=14)                                                                                                                                                |
| 1) of the following is not sta                                       | nce phase of gait.                                                                                                                                       |
| a) Preswing                                                          | b) Midswing                                                                                                                                              |
| c) Loading response                                                  | d) Post swing                                                                                                                                            |
| 2) Cadence is                                                        |                                                                                                                                                          |
| a) Steps per gait cycle                                              | b) Steps per minute                                                                                                                                      |
| c) Walking time                                                      | d) Stepping time                                                                                                                                         |
| 3) The ratio of stress of strain is know                             | vn as                                                                                                                                                    |
| a) Modulus of elasticity                                             | b) Young's modulus                                                                                                                                       |
| c) Both a and b                                                      | d) Hook's modulus                                                                                                                                        |
| 4) The shoulder and hip joints are of                                | type.                                                                                                                                                    |
| a) ball and socket                                                   | b) pivot                                                                                                                                                 |
| c) saddle                                                            | d) gliding                                                                                                                                               |
| 5) In a lever, the resistance the effort.                            | is positioned between the fulcrum and                                                                                                                    |
| a) first class b) second clas                                        | s c) third class d) fourth class P.T.O.                                                                                                                  |

| 6)  | joints are c               |                      | to side and bode a  | and forth movement  |
|-----|----------------------------|----------------------|---------------------|---------------------|
|     | a) Hinge                   | b) Gliding           | c) Pivot            | d) Condyloid        |
| 7)  | Following are basis        | c types of stress e  | xcept               |                     |
|     | a) tensile stress          | b) compressive       | c) shear            | d) volumetric       |
| 8)  | movem<br>movement of a boo |                      | goniometry is the ι | ipward or backward  |
|     | a) Planter flexion         | b) Adduction         | c) Abduction        | d) Dorsiflexion     |
| 9)  | The degree to which        | ch ajoint is able to | move is referred a  | S                   |
|     | a) posture                 |                      | b) range of motion  | n                   |
|     | c) gait                    |                      | d) muscle strengt   | h                   |
| 10) | Unit of strain is          |                      |                     |                     |
|     | a) Newton                  | b) Kg                | c) Nm               | d) Unit less        |
| 11) | A clot formation in        | blood vessels is a   | lso called          |                     |
|     | a) Diffusion               |                      | b) Drift            |                     |
|     | c) Coagulation             |                      | d) Hydrolysis       |                     |
| 12) | During gait muscle         | es use e             | nergy.              |                     |
|     | a) minimum                 | b) maximum           | c) stored           | d) kinetic          |
| 13) | A cord or strap of o       | dense tissue that o  | connects a muscle   | to bone is called a |
|     | a) tendon                  | b) ligament          | c) bursa            | d) arthritis        |
| 14) | Protective layer that      | at covers dermis is  | s known as          |                     |
|     | a) epidermis               | b) epithelial        | c) muscle           | d) nerve            |



| Seat |  |
|------|--|
| No.  |  |

# S.E. (Biomedical Engineering) (Part – II) (New CBCS) Examination, 2018 BIOMEDICAL PROSTHETIC AND ORTHOTICS

Day and Date: Thursday, 17-5-2018 Marks: 56

Time: 10.00 a.m. to 1.00 p.m.

### SECTION - I

## 2. Attempt any four questions:

 $(4 \times 4 = 16)$ 

- Draw and explain various parameters of stress, strain curve of biological tissues.
- 2) Define and explain the concept of gait cycle and mention its applications for analysis.
- 3) With the help of diagram explain biomechanics of skin.
- 4) Explain biomechanics of bone and mention its significance.
- 5) Define various types of forces and explain their analysis in the joints.

## 3. Attempt any two questions:

 $(6 \times 2 = 12)$ 

- 1) Explain complete gait cycle and draw the graphs for various joint angles.
- 2) Write a short note on:
  - a) Biomechanics of tendons and ligaments.
  - b) Synovial joints classification.
- 3) With the help of diagram explain working of goniometer and foot switches.

#### SECTION - II

## 4. Attempt any 4 questions:

- 1) Describe recent development in prosthesis and orthotics.
- 2) Describe construction and application of Jaipur foot.
- 3) Describe construction and applications of SACH foot.



- 4) Define AFO and explain it with the help of any one example in detail.
- 5) Define spinal orthosis and describe criteria for providing spinal orthosis.
- 5. Attempt any 2 questions:

- 1) Explain three point pressure principle with three examples.
- 2) List the various abnormal spinal curvatures and describe any one spinal orthosis.
- 3) Explain the PTB socket lamination procedure with necessary diagram in detail.

# S.E. (Biomedical Engineering) (Part – II) (New CBCS) Examination, 2018

|                                                                      | STHETIC AND ORTHOTICS                                                                                                                                                   |
|----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Day and Date : Thursday, 17-5-2018<br>Time : 10.00 a.m. to 1.00 p.m. | Max. Marks: 70                                                                                                                                                          |
| minutes in An<br>carries one ma<br>2) Answer MCQ                     | ompulsory. It should be solved in first 30 aswer Book on Page No. 3. Each question ark.  NObjective type questions on Page No. forget to mention, Q.P. Set (P/Q/R/S) on |
| MCQ/Objecti Duration: 30 Minutes                                     | ive Type Questions  Marks: 14                                                                                                                                           |
|                                                                      |                                                                                                                                                                         |
| Choose the correct answer :                                          | (14×1=14)                                                                                                                                                               |
| movement is measur<br>movement of a body part.                       | red by goniometry is the upward or backward                                                                                                                             |
| a) Planter flexion b) Adduction                                      | on c) Abduction d) Dorsiflexion                                                                                                                                         |
| 2) The degree to which ajoint is ab                                  | ole to move is referred as                                                                                                                                              |
| a) posture                                                           | b) range of motion                                                                                                                                                      |
| c) gait                                                              | d) muscle strength                                                                                                                                                      |
| 3) Unit of strain is                                                 |                                                                                                                                                                         |
| a) Newton b) Kg                                                      | c) Nm d) Unit less                                                                                                                                                      |
| 4) A clot formation in blood vessel                                  | ls is also called                                                                                                                                                       |
| a) Diffusion                                                         | b) Drift                                                                                                                                                                |
| c) Coagulation                                                       | d) Hydrolysis                                                                                                                                                           |
| 5) During gait muscles use                                           | energy                                                                                                                                                                  |

a) minimum b) maximum c) stored

d) kinetic

| 6)  | A cord or strap of o   | dense tissue that o  | con  | nects a muscle  | to b | one is called a |
|-----|------------------------|----------------------|------|-----------------|------|-----------------|
|     | a) tendon              | b) ligament          | c)   | bursa           | d)   | arthritis       |
| 7)  | Protective layer that  | at covers dermis is  | s kr | nown as         |      |                 |
|     | a) epidermis           | b) epithelial        | c)   | muscle          | d)   | nerve           |
| 8)  | of the foll            | owing is not stand   | e p  | hase of gait.   |      |                 |
|     | a) Preswing            |                      | b)   | Midswing        |      |                 |
|     | c) Loading respon      | ise                  | d)   | Post swing      |      |                 |
| 9)  | Cadence is             |                      |      |                 |      |                 |
|     | a) Steps per gait of   | cycle                | b)   | Steps per minu  | ıte  |                 |
|     | c) Walking time        |                      | d)   | Stepping time   |      |                 |
| 11) | The ratio of stress    | of strain is known   | as   |                 |      |                 |
|     | a) Modulus of elas     | sticity              | b)   | Young's modul   | us   |                 |
|     | c) Both a and b        |                      | d)   | Hook's modulu   | S    |                 |
| 11) | The shoulder and       | hip joints are of    |      | type.           |      |                 |
|     | a) ball and socket     |                      | b)   | pivot           |      |                 |
|     | c) saddle              |                      | d)   | gliding         |      |                 |
| 12) | In a lever the effort. | r, the resistance is | ро   | sitioned betwee | n th | ne fulcrum and  |
|     | a) first class         | b) second class      | c)   | third class     | d)   | fourth class    |
| 13) | joints are c           |                      | e to | side and bode a | nd ' | forth movement  |
|     | a) Hinge               | b) Gliding           | c)   | Pivot           | d)   | Condyloid       |
| 14) | Following are basi     | c types of stress e  | XCE  | ept             |      |                 |
|     | a) tensile stress      | b) compressive       | c)   | shear           | d)   | volumetric      |



| Seat |  |
|------|--|
| No.  |  |

# S.E. (Biomedical Engineering) (Part – II) (New CBCS) Examination, 2018 BIOMEDICAL PROSTHETIC AND ORTHOTICS

Day and Date: Thursday, 17-5-2018 Marks: 56

Time: 10.00 a.m. to 1.00 p.m.

### SECTION - I

## 2. Attempt any four questions:

 $(4 \times 4 = 16)$ 

- Draw and explain various parameters of stress, strain curve of biological tissues.
- 2) Define and explain the concept of gait cycle and mention its applications for analysis.
- 3) With the help of diagram explain biomechanics of skin.
- 4) Explain biomechanics of bone and mention its significance.
- 5) Define various types of forces and explain their analysis in the joints.

## 3. Attempt any two questions:

 $(6 \times 2 = 12)$ 

- 1) Explain complete gait cycle and draw the graphs for various joint angles.
- 2) Write a short note on:
  - a) Biomechanics of tendons and ligaments.
  - b) Synovial joints classification.
- 3) With the help of diagram explain working of goniometer and foot switches.

#### SECTION - II

## 4. Attempt any 4 questions:

- 1) Describe recent development in prosthesis and orthotics.
- 2) Describe construction and application of Jaipur foot.
- 3) Describe construction and applications of SACH foot.



- 4) Define AFO and explain it with the help of any one example in detail.
- 5) Define spinal orthosis and describe criteria for providing spinal orthosis.
- 5. Attempt any 2 questions:

- 1) Explain three point pressure principle with three examples.
- 2) List the various abnormal spinal curvatures and describe any one spinal orthosis.
- 3) Explain the PTB socket lamination procedure with necessary diagram in detail.

| Seat |  |
|------|--|
| No.  |  |

Set R

# S.E. (Biomedical Engineering) (Part – II) (New CBCS) Examination, 2018 BIOMEDICAL PROSTHETIC AND ORTHOTICS

| Day and Date: Thursday, 17-5-2018             | Max. Marks: 70              |
|-----------------------------------------------|-----------------------------|
| Time: 10.00 a.m. to 1.00 p.m.                 |                             |
| Instructions: 1) Q. No. 1 is compulsory. It s | hould be solved in first 30 |

minutes in Answer Book on Page No. 3. Each question carries one mark.

2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

|         |                        | MCQ/Objective T      | ype Questions         |                |           |
|---------|------------------------|----------------------|-----------------------|----------------|-----------|
| Duratio | n : 30 Minutes         |                      |                       |                | Marks: 14 |
| 1. Ch   | oose the correct an    | swer:                |                       |                | (14×1=14) |
| 1)      | In a lever the effort. | r, the resistance is | positioned between    | en the fulcrun | n and     |
|         | a) first class         | b) second class      | c) third class        | d) fourth cla  | ass       |
| 2)      | joints are o           | •                    | e to side and bode a  | and forth mov  | ement     |
|         | a) Hinge               | b) Gliding           | c) Pivot              | d) Condylo     | id        |
| 3)      | Following are basi     | c types of stress e  | except                |                |           |
|         | a) tensile stress      | b) compressive       | c) shear              | d) volumetr    | ric       |
| 4)      | movem                  | •                    | y goniometry is the ι | upward or bac  | kward     |
|         | a) Planter flexion     | b) Adduction         | c) Abduction          | d) Dorsiflex   | rion      |
| 5)      | The degree to which    | ch ajoint is able to | move is referred a    | as             |           |
|         | a) posture             |                      | b) range of motio     | n              |           |
|         | c) gait                |                      | d) muscle strengt     | th             |           |

| 6)  | Unit of strain is     |                     |      |                |      |                 |
|-----|-----------------------|---------------------|------|----------------|------|-----------------|
|     | a) Newton             | b) Kg               | c)   | Nm             | d)   | Unit less       |
| 7)  | A clot formation in   | blood vessels is a  | lso  | called         |      |                 |
|     | a) Diffusion          |                     | b)   | Drift          |      |                 |
|     | c) Coagulation        |                     | d)   | Hydrolysis     |      |                 |
| 8)  | During gait muscle    | es use e            | ne   | rgy.           |      |                 |
|     | a) minimum            | b) maximum          | c)   | stored         | d)   | kinetic         |
| 9)  | A cord or strap of o  | dense tissue that o | on   | nects a muscle | to b | one is called a |
|     | a) tendon             | b) ligament         | c)   | bursa          | d)   | arthritis       |
| 10) | Protective layer that | at covers dermis is | s kr | nown as        |      |                 |
|     | a) epidermis          | b) epithelial       | c)   | muscle         | d)   | nerve           |
| 11) | of the foll           | owing is not stand  | e p  | hase of gait.  |      |                 |
|     | a) Preswing           |                     | b)   | Midswing       |      |                 |
|     | c) Loading respon     | ise                 | d)   | Post swing     |      |                 |
| 12) | Cadence is            |                     |      |                |      |                 |
|     | a) Steps per gait of  | cycle               | b)   | Steps per minu | ıte  |                 |
|     | c) Walking time       |                     | d)   | Stepping time  |      |                 |
| 13) | The ratio of stress   | of strain is known  | as   |                |      |                 |
|     | a) Modulus of elas    | sticity             | b)   | Young's modul  | us   |                 |
|     | c) Both a and b       |                     | d)   | Hook's modulu  | S    |                 |
| 14) | The shoulder and      | hip joints are of   |      | type.          |      |                 |
|     | a) ball and socket    |                     | b)   | pivot          |      |                 |
|     | c) saddle             |                     | d)   | gliding        |      |                 |
|     |                       |                     |      |                |      |                 |



| Seat |  |
|------|--|
| No.  |  |

# S.E. (Biomedical Engineering) (Part – II) (New CBCS) Examination, 2018 BIOMEDICAL PROSTHETIC AND ORTHOTICS

Day and Date: Thursday, 17-5-2018 Marks: 56

Time: 10.00 a.m. to 1.00 p.m.

### SECTION - I

## 2. Attempt any four questions:

 $(4 \times 4 = 16)$ 

- 1) Draw and explain various parameters of stress, strain curve of biological tissues.
- 2) Define and explain the concept of gait cycle and mention its applications for analysis.
- 3) With the help of diagram explain biomechanics of skin.
- 4) Explain biomechanics of bone and mention its significance.
- 5) Define various types of forces and explain their analysis in the joints.

## 3. Attempt any two questions:

 $(6 \times 2 = 12)$ 

- 1) Explain complete gait cycle and draw the graphs for various joint angles.
- 2) Write a short note on:
  - a) Biomechanics of tendons and ligaments.
  - b) Synovial joints classification.
- 3) With the help of diagram explain working of goniometer and foot switches.

#### SECTION - II

## 4. Attempt any 4 questions:

- 1) Describe recent development in prosthesis and orthotics.
- 2) Describe construction and application of Jaipur foot.
- 3) Describe construction and applications of SACH foot.



- 4) Define AFO and explain it with the help of any one example in detail.
- 5) Define spinal orthosis and describe criteria for providing spinal orthosis.
- 5. Attempt any 2 questions:

- 1) Explain three point pressure principle with three examples.
- 2) List the various abnormal spinal curvatures and describe any one spinal orthosis.
- 3) Explain the PTB socket lamination procedure with necessary diagram in detail.

Set S

# S.E. (Biomedical Engineering) (Part – II) (New CBCS) Examination, 2018 BIOMEDICAL PROSTHETIC AND ORTHOTICS

|          | BIOWEL                                   | JICAL PROSTINE                                                                | THE AND ORTH                           | 01103                                                                          |
|----------|------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------|--------------------------------------------------------------------------------|
| -        | nd Date : Thursday<br>10.00 a.m. to 1.00 |                                                                               |                                        | Max. Marks: 70                                                                 |
|          | 2) A                                     | <b>ninutes</b> in Answei<br>carries <b>one</b> mark.<br><b>Answer MCQ/Obj</b> | r Book on Page No<br>ective type quest | e solved in first 30 o. 3. Each question rions on Page No. P. Set (P/Q/R/S) on |
| <b>5</b> | 00.14:                                   | MCQ/Objective T                                                               | Type Questions                         |                                                                                |
| Duratio  | on : 30 Minutes                          |                                                                               |                                        | Marks: 14                                                                      |
| 1. Ch    | oose the correct a                       | nswer:                                                                        |                                        | (14×1=14)                                                                      |
| 1)       | Unit of strain is                        |                                                                               |                                        |                                                                                |
|          | a) Newton                                | b) Kg                                                                         | c) Nm                                  | d) Unit less                                                                   |
| 2)       | A clot formation in                      | n blood vessels is a                                                          | also called                            |                                                                                |
|          | a) Diffusion                             |                                                                               | b) Drift                               |                                                                                |
|          | c) Coagulation                           |                                                                               | d) Hydrolysis                          |                                                                                |
| 3)       | During gait muscl                        | es use                                                                        | energy.                                |                                                                                |
|          | a) minimum                               | b) maximum                                                                    | c) stored                              | d) kinetic                                                                     |
| 4)       | A cord or strap of                       | dense tissue that                                                             | connects a muscle                      | to bone is called a                                                            |
|          | a) tendon                                | b) ligament                                                                   | c) bursa                               | d) arthritis                                                                   |
| 5)       | Protective layer th                      | nat covers dermis i                                                           | is known as                            |                                                                                |
|          | a) epidermis                             | b) epithelial                                                                 | c) muscle                              | d) nerve                                                                       |
| 6)       | of the fo                                | llowing is not stand                                                          | ce phase of gait.                      |                                                                                |
|          | a) Preswing                              |                                                                               | b) Midswing                            |                                                                                |
|          | c) Loading respo                         | nse                                                                           | d) Post swing                          |                                                                                |
|          |                                          |                                                                               |                                        |                                                                                |

| 7)  | Cadence is              |                      |      |                   |      |                 |
|-----|-------------------------|----------------------|------|-------------------|------|-----------------|
|     | a) Steps per gait of    | cycle                | b)   | Steps per minu    | ıte  |                 |
|     | c) Walking time         |                      | d)   | Stepping time     |      |                 |
| 8)  | The ratio of stress     | of strain is known   | as   |                   |      |                 |
|     | a) Modulus of elas      | sticity              | b)   | Young's modul     | lus  |                 |
|     | c) Both a and b         |                      | d)   | Hook's modulu     | IS   |                 |
| 9)  | The shoulder and        | hip joints are of    |      | type.             |      |                 |
|     | a) ball and socket      |                      | b)   | pivot             |      |                 |
|     | c) saddle               |                      | d)   | gliding           |      |                 |
| 10) | In a lever the effort.  | r, the resistance is | ро   | sitioned betwee   | n th | ne fulcrum and  |
|     | a) first class          | b) second class      | c)   | third class       | d)   | fourth class    |
| 11) | joints are c            | •                    | e to | side and bode a   | ınd  | forth movement  |
|     | a) Hinge                | b) Gliding           | c)   | Pivot             | d)   | Condyloid       |
| 12) | Following are basic     | c types of stress e  | XCE  | ept               |      |                 |
|     | a) tensile stress       | b) compressive       | c)   | shear             | d)   | volumetric      |
| 13) | movem movement of a boo |                      | / gc | niometry is the u | ıpw  | ard or backward |
|     | a) Planter flexion      | b) Adduction         | c)   | Abduction         | d)   | Dorsiflexion    |
| 14) | The degree to which     | ch ajoint is able to | mo   | ove is referred a | .S   |                 |
|     | a) posture              |                      | b)   | range of motion   | n    |                 |
|     | c) gait                 |                      | d)   | muscle strengt    | h    |                 |
|     |                         |                      |      |                   |      |                 |



| Seat |  |
|------|--|
| No.  |  |

# S.E. (Biomedical Engineering) (Part – II) (New CBCS) Examination, 2018 BIOMEDICAL PROSTHETIC AND ORTHOTICS

Day and Date: Thursday, 17-5-2018 Marks: 56

Time: 10.00 a.m. to 1.00 p.m.

### SECTION - I

## 2. Attempt any four questions:

 $(4 \times 4 = 16)$ 

- 1) Draw and explain various parameters of stress, strain curve of biological tissues.
- 2) Define and explain the concept of gait cycle and mention its applications for analysis.
- 3) With the help of diagram explain biomechanics of skin.
- 4) Explain biomechanics of bone and mention its significance.
- 5) Define various types of forces and explain their analysis in the joints.

## 3. Attempt any two questions:

 $(6 \times 2 = 12)$ 

- 1) Explain complete gait cycle and draw the graphs for various joint angles.
- 2) Write a short note on:
  - a) Biomechanics of tendons and ligaments.
  - b) Synovial joints classification.
- 3) With the help of diagram explain working of goniometer and foot switches.

#### SECTION - II

## 4. Attempt any 4 questions:

- 1) Describe recent development in prosthesis and orthotics.
- 2) Describe construction and application of Jaipur foot.
- 3) Describe construction and applications of SACH foot.



- 4) Define AFO and explain it with the help of any one example in detail.
- 5) Define spinal orthosis and describe criteria for providing spinal orthosis.
- 5. Attempt any 2 questions:

- 1) Explain three point pressure principle with three examples.
- 2) List the various abnormal spinal curvatures and describe any one spinal orthosis.
- 3) Explain the PTB socket lamination procedure with necessary diagram in detail.

| Seat |  |
|------|--|
| No.  |  |

Set P

P.T.O.

# S.E. (Part – II) (New CBCS) Biomedical Engg. Examination, 2018 ELECTRONIC INSTRUMENTATIONS

Day and Date: Saturday, 19-5-2018 Total Marks: 70

Time: 10.00 a.m. to 1.00 p.m.

- Instructions: 1) Q. No. 1 is compulsory. It should be solved in first
  30 minutes in Answer Book Page No. 3. Each question
  carries one mark.
  - 2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

|     | N                       | ICQ/Objective      | Type Questions  | 3         |           |
|-----|-------------------------|--------------------|-----------------|-----------|-----------|
| Dur | ation : 30 Minutes      |                    |                 |           | Marks: 14 |
| 1.  | Choose the correct an   | swer:              |                 |           | (14×1=14) |
|     | 1) The sensitivity of a | multimeter is giv  | ven in          |           |           |
|     | a) $\Omega$             | b) Amperes         | c) K $\Omega/V$ | d) Joules |           |
|     | 2) Dynamic errors are   | caused by          |                 |           |           |
|     | a) Instrument not r     | esponding fast     |                 |           |           |
|     | b) Human error          |                    |                 |           |           |
|     | c) Environmental e      | error              |                 |           |           |
|     | d) Observational e      | rror               |                 |           |           |
|     | 3) A time base selector | or is used to sele | ect             |           |           |
|     | a) Frequency            |                    | b) Time         |           |           |
|     | c) Amplitude            |                    | d) Voltage      |           |           |
|     | 4) A frequency meter    | is used to meas    | ure             |           |           |
|     | a) Frequency            |                    | b) Ratio        |           |           |
|     | c) Time interval        |                    | d) Phase        |           | DTO       |

| 5)  | The distance between 2 peaks measured on the X-axis is 2 cm, at 1 cr div. The frequency of the signal is |                               |     |                   | s is 2 cm, at 1 cm/ |  |
|-----|----------------------------------------------------------------------------------------------------------|-------------------------------|-----|-------------------|---------------------|--|
|     | a) 50 Hz                                                                                                 | b) 5 Hz                       | c)  | 1 KHz             | d) 500 Hz           |  |
| 6)  | A sampling CRO is                                                                                        | used for                      |     |                   |                     |  |
|     | a) HF                                                                                                    | b) VLF                        | c)  | VHF               | d) LF               |  |
| 7)  | Frequency dividers                                                                                       | are obtained by t             | he  | use of            |                     |  |
|     | a) LC network                                                                                            | b) AND gate                   | c)  | Flip flop         | d) RC n/W           |  |
| 8)  | A sweep generator                                                                                        | is used to                    |     | _                 |                     |  |
|     | a) Fault finding                                                                                         |                               | b)  | Frequency ge      | eneration           |  |
|     | c) Amplification                                                                                         |                               | d)  | Alignment         |                     |  |
| 9)  | In a function generation wave.                                                                           | tor, the resistanc            | e d | iode network i    | s used to produce   |  |
|     | a) Square                                                                                                | b) Sine                       | c)  | Triangular        | d) Pulse            |  |
| 0)  | A null type recorder                                                                                     | uses                          |     |                   |                     |  |
|     | a) Amplifier                                                                                             | b) Inductor                   | c)  | Capacitor         | d) Potentiometer    |  |
| 11) | Measurement by du                                                                                        | ıal slope DVM is <sub>l</sub> | per | formed during     | slope.              |  |
|     | a) Rising                                                                                                |                               | b)  | Falling           |                     |  |
|     | c) Rising and falling                                                                                    | 9                             | d)  | None of the a     | lbove               |  |
| 12) | A distortion is define                                                                                   | ed as                         |     |                   |                     |  |
|     | a) Unwanted freque                                                                                       | ency                          | b)  | Unwanted an       | nplitude            |  |
|     | c) Change in shape of waveform                                                                           |                               | d)  | ) Unwanted signal |                     |  |
| 13) | Q factor is defined a                                                                                    | as                            |     |                   |                     |  |
|     | a) Reactance/resist                                                                                      | tance                         | b)  | Resistance/re     | eactance            |  |
|     | c) Resistance/impe                                                                                       | dance                         | d)  | Impedance/re      | esistance           |  |
| 14) | Accuracy is express                                                                                      | sed as                        |     |                   |                     |  |
|     | a) Relative accurac                                                                                      | ;y                            | b)  | % accuracy        |                     |  |
|     | c) Error                                                                                                 |                               | d)  | % error           |                     |  |
|     |                                                                                                          |                               |     |                   |                     |  |



| Seat |  |
|------|--|
| No.  |  |

# S.E. (Part – II) (New CBCS) Biomedical Engg. Examination, 2018 ELECTRONIC INSTRUMENTATIONS

Day and Date: Saturday, 19-5-2018 Total Marks: 56

Time: 10.00 a.m. to 1.00 p.m.

### SECTION - I

## 2. Attempt any four questions:

 $(4 \times 4 = 16)$ 

- 1) Explain how a PMMC can be used as an AC voltmeter.
- 2) Draw and explain working of average responding voltmeter.
- 3) State the advantages of a DVM over an analog meter.
- 4) Describe with a diagram, the working of digital multimeter.
- 5) A voltmeter having a sensitivity of 1 K  $\Omega$ /V is connected across an unknown resistance in series with a milli ammeter reading 80 V on 150 V scale. When the milliammeter reads 10  $\mu$ A, calculate the :
  - a) Total circuit resistance.
  - b) Actual value of unknown resistance.
  - c) Error due to loading effect of voltmeter.

## 3. Attempt any 2 questions:

- 1) Derive an expression for dynamic response of first order and second order instrument.
- 2) With the help of block diagram, explain working of digital frequency meter.
- 3) With the help of block diagram, and waveform, explain working of integrating type DVM.

# 

### SECTION - II

4. Attempt any four questions:

 $(4 \times 4 = 16)$ 

- 1) Define following terms:
  - a) Intensity modulation
  - b) Time base circuit.
- 2) Explain the principle of operation of single beam CRO.
- 3) Explain the working of data acquisition system with an example.
- 4) Differentiate between indicator and recorder also differentiate between galvanotype recorder and potentiometric recorder.
- 5) With the help of block diagram, explain working of sampling oscilloscope.
- 5. Attempt any 2 questions:

- 1) With the help of block diagram, explain working of dual trace CRO.
- 2) With the help of block diagram, explain working of function generator.
- 3) Explain working of following:
  - a) LCD display system.
  - b) Non fade display system.

|--|

| Seat |  |
|------|--|
| No.  |  |

Set Q

# S.E. (Part – II) (New CBCS) Biomedical Engg. Examination, 2018 ELECTRONIC INSTRUMENTATIONS

Day and Date: Saturday, 19-5-2018 Total Marks: 70

Time: 10.00 a.m. to 1.00 p.m.

- Instructions: 1) Q. No. 1 is compulsory. It should be solved in first
  30 minutes in Answer Book Page No. 3. Each question
  carries one mark.
  - 2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

## **MCQ/Objective Type Questions**

| Dur | atio | n : 30 Minutes                                                                        |                     |      |               |               | Marks: 14 |
|-----|------|---------------------------------------------------------------------------------------|---------------------|------|---------------|---------------|-----------|
| 1.  | Ch   | noose the correct ar                                                                  | iswer:              |      |               |               | (14×1=14) |
|     | 1)   | <ul><li>A sweep generator</li><li>a) Fault finding</li><li>c) Amplification</li></ul> | is used to          | b)   | Frequency g   | eneration     |           |
|     | 2)   | In a function gener wave.                                                             | ator, the resistand | ce d | iode network  | is used to pr | oduce     |
|     |      | a) Square                                                                             | b) Sine             | c)   | Triangular    | d) Pulse      |           |
|     | 3)   | A null type recorde                                                                   | r uses              |      |               |               |           |
|     |      | a) Amplifier                                                                          | b) Inductor         | c)   | Capacitor     | d) Potentio   | ometer    |
|     | 4)   | Measurement by d                                                                      | ual slope DVM is    | per  | formed during | j s           | slope.    |
|     |      | a) Rising                                                                             |                     | b)   | Falling       |               |           |
|     |      | c) Rising and falling                                                                 | g                   | d)   | None of the   | above         |           |
|     | 5)   | A distortion is defin                                                                 | ed as               |      |               |               |           |
|     |      | a) Unwanted frequ                                                                     | iency               | b)   | Unwanted ar   | mplitude      |           |
|     |      | c) Change in shap                                                                     | e of waveform       | d)   | Unwanted si   | gnal          |           |

| 6)  | Q factor is defined a                              | as                 |      |               |                     |
|-----|----------------------------------------------------|--------------------|------|---------------|---------------------|
|     | a) Reactance/resist                                | tance              | b)   | Resistance/re | eactance            |
|     | c) Resistance/impe                                 | dance              | d)   | Impedance/re  | esistance           |
| 7)  | Accuracy is express                                | sed as             |      |               |                     |
|     | a) Relative accurac                                | ey .               | b)   | % accuracy    |                     |
|     | c) Error                                           |                    | d)   | % error       |                     |
| 8)  | The sensitivity of a                               | multimeter is give | n ir | າ             |                     |
|     | a) $\Omega$                                        | b) Amperes         | c)   | K Ω/V         | d) Joules           |
| 9)  | Dynamic errors are                                 | caused by          |      |               |                     |
|     | a) Instrument not re                               | esponding fast     |      |               |                     |
|     | b) Human error                                     |                    |      |               |                     |
|     | c) Environmental e                                 | rror               |      |               |                     |
|     | d) Observational er                                | ror                |      |               |                     |
| 10) | A time base selecto                                | r is used to selec | t    |               | -                   |
|     | a) Frequency                                       |                    | b)   | Time          |                     |
|     | c) Amplitude                                       |                    | d)   | Voltage       |                     |
| 11) | A frequency meter i                                | s used to measur   | e _  |               |                     |
|     | a) Frequency                                       |                    | b)   | Ratio         |                     |
|     | c) Time interval                                   |                    | d)   | Phase         |                     |
| 12) | The distance betwee div. The frequency of          |                    |      |               | s is 2 cm, at 1 cm/ |
|     | a) 50 Hz                                           | b) 5 Hz            | c)   | 1 KHz         | d) 500 Hz           |
| 13) | A sampling CRO is                                  | used for           |      |               |                     |
|     |                                                    |                    | ۵)   | \/HE          | ط/ ۱ E              |
|     | a) HF                                              | b) VLF             | C)   | VIII          | d) LF               |
| 14) | <ul><li>a) HF</li><li>Frequency dividers</li></ul> |                    |      |               | •                   |
| 14) | ,                                                  | are obtained by t  | he   | use of        |                     |



| Seat |  |
|------|--|
| No.  |  |

# S.E. (Part – II) (New CBCS) Biomedical Engg. Examination, 2018 ELECTRONIC INSTRUMENTATIONS

Day and Date: Saturday, 19-5-2018 Total Marks: 56

Time: 10.00 a.m. to 1.00 p.m.

#### SECTION - I

## 2. Attempt any four questions:

 $(4 \times 4 = 16)$ 

- 1) Explain how a PMMC can be used as an AC voltmeter.
- 2) Draw and explain working of average responding voltmeter.
- 3) State the advantages of a DVM over an analog meter.
- 4) Describe with a diagram, the working of digital multimeter.
- 5) A voltmeter having a sensitivity of 1 K  $\Omega$ /V is connected across an unknown resistance in series with a milli ammeter reading 80 V on 150 V scale. When the milliammeter reads 10  $\mu$ A, calculate the :
  - a) Total circuit resistance.
  - b) Actual value of unknown resistance.
  - c) Error due to loading effect of voltmeter.

## 3. Attempt any 2 questions:

- 1) Derive an expression for dynamic response of first order and second order instrument.
- 2) With the help of block diagram, explain working of digital frequency meter.
- 3) With the help of block diagram, and waveform, explain working of integrating type DVM.

# 

### SECTION - II

4. Attempt any four questions:

 $(4 \times 4 = 16)$ 

- 1) Define following terms:
  - a) Intensity modulation
  - b) Time base circuit.
- 2) Explain the principle of operation of single beam CRO.
- 3) Explain the working of data acquisition system with an example.
- 4) Differentiate between indicator and recorder also differentiate between galvanotype recorder and potentiometric recorder.
- 5) With the help of block diagram, explain working of sampling oscilloscope.
- 5. Attempt any 2 questions:

- 1) With the help of block diagram, explain working of dual trace CRO.
- 2) With the help of block diagram, explain working of function generator.
- 3) Explain working of following:
  - a) LCD display system.
  - b) Non fade display system.



## **SLR-TC - 442**

| Seat |  |
|------|--|
| No.  |  |

Set R

## S.E. (Part – II) (New CBCS) Biomedical Engg. Examination, 2018 ELECTRONIC INSTRUMENTATIONS

Day and Date : Saturday, 19-5-2018 Total Marks : 70

Time: 10.00 a.m. to 1.00 p.m.

- Instructions: 1) Q. No. 1 is compulsory. It should be solved in first
  30 minutes in Answer Book Page No. 3. Each question
  carries one mark.
  - 2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

### **MCQ/Objective Type Questions**

|     |                                         |                                           | ,,,               |                       |
|-----|-----------------------------------------|-------------------------------------------|-------------------|-----------------------|
| Dur | ation: 30 Minutes                       |                                           |                   | Marks: 14             |
| 1.  | Choose the correct a                    | answer:                                   |                   | (14×1=14)             |
|     | The distance between div. The frequence | ween 2 peaks mea<br>by of the signal is _ |                   | xis is 2 cm, at 1 cm/ |
|     | a) 50 Hz                                | b) 5 Hz                                   | c) 1 KHz          | d) 500 Hz             |
|     | 2) A sampling CRO                       | is used for                               |                   |                       |
|     | a) HF                                   | b) VLF                                    | c) VHF            | d) LF                 |
|     | 3) Frequency divide                     | rs are obtained by                        | the use of        |                       |
|     | a) LC network                           | b) AND gate                               | c) Flip flop      | d) RC n/W             |
|     | 4) A sweep generat                      | or is used to                             |                   |                       |
|     | a) Fault finding                        |                                           | b) Frequency      | generation            |
|     | c) Amplification                        |                                           | d) Alignment      |                       |
|     | 5) In a function generation wave.       | erator, the resistan                      | ice diode network | is used to produce    |
|     | a) Square                               | b) Sine                                   | c) Triangular     | d) Pulse              |

| 6)  | A null type recorder uses          |           |               |             |       |
|-----|------------------------------------|-----------|---------------|-------------|-------|
|     | a) Amplifier b) Inductor           | c)        | Capacitor     | d) Potentio | meter |
| 7)  | Measurement by dual slope DVI      | M is perf | ormed during  | S           | lope. |
|     | a) Rising                          | b)        | Falling       |             |       |
|     | c) Rising and falling              | d)        | None of the a | above       |       |
| 8)  | A distortion is defined as         |           |               |             |       |
|     | a) Unwanted frequency              | b)        | Unwanted an   | nplitude    |       |
|     | c) Change in shape of waveform     | m d)      | Unwanted sig  | gnal        |       |
| 9)  | Q factor is defined as             |           |               |             |       |
|     | a) Reactance/resistance            | b)        | Resistance/re | eactance    |       |
|     | c) Resistance/impedance            | d)        | Impedance/re  | esistance   |       |
| 10) | Accuracy is expressed as           |           | _             |             |       |
|     | a) Relative accuracy               | b)        | % accuracy    |             |       |
|     | c) Error                           | d)        | % error       |             |       |
| 11) | The sensitivity of a multimeter is | given ir  | l             |             |       |
|     | a) $\Omega$ b) Amperes             | s c)      | K Ω/V         | d) Joules   |       |
| 12) | Dynamic errors are caused by _     |           |               |             |       |
|     | a) Instrument not responding fa    | st        |               |             |       |
|     | b) Human error                     |           |               |             |       |
|     | c) Environmental error             |           |               |             |       |
|     | d) Observational error             |           |               |             |       |
| 13) | A time base selector is used to s  | select    |               | _           |       |
|     | a) Frequency                       | b)        | Time          |             |       |
|     | c) Amplitude                       | d)        | Voltage       |             |       |
| 14) | A frequency meter is used to me    | easure _  |               | -           |       |
|     | a) Frequency                       | b)        | Ratio         |             |       |
|     | c) Time interval                   | d)        | Phase         |             |       |
|     |                                    |           |               |             |       |



| Seat |  |
|------|--|
| No.  |  |

## S.E. (Part – II) (New CBCS) Biomedical Engg. Examination, 2018 ELECTRONIC INSTRUMENTATIONS

Day and Date: Saturday, 19-5-2018 Total Marks: 56

Time: 10.00 a.m. to 1.00 p.m.

#### SECTION - I

#### 2. Attempt any four questions:

 $(4 \times 4 = 16)$ 

- 1) Explain how a PMMC can be used as an AC voltmeter.
- 2) Draw and explain working of average responding voltmeter.
- 3) State the advantages of a DVM over an analog meter.
- 4) Describe with a diagram, the working of digital multimeter.
- 5) A voltmeter having a sensitivity of 1 K  $\Omega$ /V is connected across an unknown resistance in series with a milli ammeter reading 80 V on 150 V scale. When the milliammeter reads 10  $\mu$ A, calculate the :
  - a) Total circuit resistance.
  - b) Actual value of unknown resistance.
  - c) Error due to loading effect of voltmeter.

## 3. Attempt any 2 questions:

- 1) Derive an expression for dynamic response of first order and second order instrument.
- 2) With the help of block diagram, explain working of digital frequency meter.
- 3) With the help of block diagram, and waveform, explain working of integrating type DVM.

#### SECTION - II

4. Attempt any four questions:

 $(4 \times 4 = 16)$ 

- 1) Define following terms:
  - a) Intensity modulation
  - b) Time base circuit.
- 2) Explain the principle of operation of single beam CRO.
- 3) Explain the working of data acquisition system with an example.
- 4) Differentiate between indicator and recorder also differentiate between galvanotype recorder and potentiometric recorder.
- 5) With the help of block diagram, explain working of sampling oscilloscope.
- 5. Attempt any 2 questions:

- 1) With the help of block diagram, explain working of dual trace CRO.
- 2) With the help of block diagram, explain working of function generator.
- 3) Explain working of following:
  - a) LCD display system.
  - b) Non fade display system.

| <br> | <br> | <br> | <br> | <br>••• |
|------|------|------|------|---------|

**SLR-TC - 442** 

Set S

## Seat No.

## S.E. (Part – II) (New CBCS) Biomedical Engg. Examination, 2018 ELECTRONIC INSTRUMENTATIONS

Day and Date: Saturday, 19-5-2018 Total Marks: 70

Time: 10.00 a.m. to 1.00 p.m.

- Instructions: 1) Q. No. 1 is compulsory. It should be solved in first
  30 minutes in Answer Book Page No. 3. Each question
  carries one mark.
  - 2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

## MCQ/Objective Type Questions

| Dur | ation : 30 Minutes                 | Marks: 14                     |
|-----|------------------------------------|-------------------------------|
| 1.  | Choose the correct answer:         | (14×1=14)                     |
|     | 1) A null type recorder uses       |                               |
|     | a) Amplifier b) Inductor           | c) Capacitor d) Potentiometer |
|     | 2) Measurement by dual slope DVM i | s performed during slope.     |
|     | a) Rising                          | b) Falling                    |
|     | c) Rising and falling              | d) None of the above          |
|     | 3) A distortion is defined as      |                               |
|     | a) Unwanted frequency              | b) Unwanted amplitude         |
|     | c) Change in shape of waveform     | d) Unwanted signal            |
|     | 4) Q factor is defined as          | _                             |
|     | a) Reactance/resistance            | b) Resistance/reactance       |
|     | c) Resistance/impedance            | d) Impedance/resistance       |
|     | 5) Accuracy is expressed as        |                               |
|     | a) Relative accuracy               | b) % accuracy                 |
|     | c) Error                           | d) % error                    |

| The sensitivity of a           | multimeter is give                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | n ir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | າ                                                |                                                        |                              |
|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|--------------------------------------------------------|------------------------------|
| a) $\Omega$                    | b) Amperes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Κ Ω/V                                            | d)                                                     | Joules                       |
| Dynamic errors are             | caused by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                  |                                                        |                              |
| a) Instrument not re           | esponding fast                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                  |                                                        |                              |
| b) Human error                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                  |                                                        |                              |
| c) Environmental e             | rror                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                  |                                                        |                              |
| d) Observational er            | ror                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                  |                                                        |                              |
| A time base selecto            | r is used to select                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                  | -                                                      |                              |
| a) Frequency                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Time                                             |                                                        |                              |
| c) Amplitude                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | d)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Voltage                                          |                                                        |                              |
| A frequency meter i            | s used to measur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | e _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                  |                                                        |                              |
| a) Frequency                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ratio                                            |                                                        |                              |
| c) Time interval               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | d)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Phase                                            |                                                        |                              |
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                  | s is                                                   | 2 cm, at 1 cm/               |
| a) 50 Hz                       | b) 5 Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 KHz                                            | d)                                                     | 500 Hz                       |
| A sampling CRO is              | used for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                  |                                                        |                              |
| a) HF                          | b) VLF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | VHF                                              | d)                                                     | LF                           |
| Frequency dividers             | are obtained by tl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | he ı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | use of                                           |                                                        |                              |
| a) LC network                  | b) AND gate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Flip flop                                        | d)                                                     | RC n/W                       |
| A sweep generator              | is used to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _                                                |                                                        |                              |
| a) Fault finding               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Frequency ge                                     | ene                                                    | ration                       |
| c) Amplification               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | d)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Alignment                                        |                                                        |                              |
| In a function generation wave. | ator, the resistance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | e di                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | iode network is                                  | s us                                                   | sed to produce               |
| a) Square                      | b) Sine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Triangular                                       | d)                                                     | Pulse                        |
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                  |                                                        |                              |
|                                | <ul> <li>a) Ω</li> <li>Dynamic errors are</li> <li>a) Instrument not re</li> <li>b) Human error</li> <li>c) Environmental e</li> <li>d) Observational er</li> <li>A time base selector</li> <li>a) Frequency</li> <li>c) Amplitude</li> <li>A frequency meter i</li> <li>a) Frequency</li> <li>c) Time interval</li> <li>The distance betweediv. The frequency of</li> <li>a) 50 Hz</li> <li>A sampling CRO is</li> <li>a) HF</li> <li>Frequency dividers</li> <li>a) LC network</li> <li>A sweep generator</li> <li>a) Fault finding</li> <li>c) Amplification</li> <li>In a function generator</li> <li>wave.</li> </ul> | a) Ω b) Amperes  Dynamic errors are caused by a) Instrument not responding fast b) Human error c) Environmental error d) Observational error A time base selector is used to select a) Frequency c) Amplitude A frequency meter is used to measur a) Frequency c) Time interval The distance between 2 peaks measur div. The frequency of the signal is a) 50 Hz b) 5 Hz A sampling CRO is used for a) HF b) VLF Frequency dividers are obtained by t a) LC network b) AND gate A sweep generator is used to a) Fault finding c) Amplification In a function generator, the resistanc wave. | a) Ω b) Amperes c)  Dynamic errors are caused by | a) Ω b) Amperes c) K Ω/V  Dynamic errors are caused by | Dynamic errors are caused by |



| Seat |  |
|------|--|
| No.  |  |

## S.E. (Part – II) (New CBCS) Biomedical Engg. Examination, 2018 ELECTRONIC INSTRUMENTATIONS

Day and Date: Saturday, 19-5-2018 Total Marks: 56

Time: 10.00 a.m. to 1.00 p.m.

#### SECTION - I

### 2. Attempt any four questions:

 $(4 \times 4 = 16)$ 

- 1) Explain how a PMMC can be used as an AC voltmeter.
- 2) Draw and explain working of average responding voltmeter.
- 3) State the advantages of a DVM over an analog meter.
- 4) Describe with a diagram, the working of digital multimeter.
- 5) A voltmeter having a sensitivity of 1 K  $\Omega$ /V is connected across an unknown resistance in series with a milli ammeter reading 80 V on 150 V scale. When the milliammeter reads 10  $\mu$ A, calculate the :
  - a) Total circuit resistance.
  - b) Actual value of unknown resistance.
  - c) Error due to loading effect of voltmeter.

## 3. Attempt any 2 questions:

- 1) Derive an expression for dynamic response of first order and second order instrument.
- 2) With the help of block diagram, explain working of digital frequency meter.
- 3) With the help of block diagram, and waveform, explain working of integrating type DVM.

#### SECTION - II

4. Attempt any four questions:

 $(4 \times 4 = 16)$ 

- 1) Define following terms:
  - a) Intensity modulation
  - b) Time base circuit.
- 2) Explain the principle of operation of single beam CRO.
- 3) Explain the working of data acquisition system with an example.
- 4) Differentiate between indicator and recorder also differentiate between galvanotype recorder and potentiometric recorder.
- 5) With the help of block diagram, explain working of sampling oscilloscope.
- 5. Attempt any 2 questions:

- 1) With the help of block diagram, explain working of dual trace CRO.
- 2) With the help of block diagram, explain working of function generator.
- 3) Explain working of following:
  - a) LCD display system.
  - b) Non fade display system.

| S     | L | R | -1 | <b>C</b> | <b>)</b> — | 4 | 43 |
|-------|---|---|----|----------|------------|---|----|
| ullet |   |   |    | _        | ,          |   |    |



| Seat |  |
|------|--|
| No.  |  |

Set P

# S.E. (Part – II) (Biomedical Engg.) (New CBCS) Examination, 2018 DIGITAL DESIGN

| Day and Date : Tuesday, 22-5-20                                   | 18 Max. Marks :                                                                          | 70   |
|-------------------------------------------------------------------|------------------------------------------------------------------------------------------|------|
| 30 minu<br>carries o<br>2) Answer                                 | MCQ/Objective type questions on Page No. n't forget to mention, Q.P. Set (P/Q/R/S) on To |      |
| MCQ/O Duration: 30 Minutes                                        | <b>bjective Type Questions</b> Marks:                                                    | . 14 |
| 1. Choose the correct answer :                                    | (1×14=                                                                                   | 14)  |
| 1) variables wil<br>a) 8<br>c) 4                                  | be represented by four minterm. b) 2 d) 3                                                |      |
| 2) Extremely possible achieved in CMOS IC's . a) Low c) Moderate  | by b                                                 |      |
| <ul><li>3) In excitation of</li><li>a) T</li><li>c) J-K</li></ul> | flip flop next state is equal to D state.<br>b) D<br>d) R-S                              |      |

4) \_\_\_\_\_ adder circuits, the carry look ripple delay is eliminated.

a) Multiplication

a) Half

b) Addition

b) Fulld) Parallel

c) Approximation

c) Carry look ahead

d) Integration

| 6)  | The time required time.                                                                       | d for a gate or in                              | verter to change                                          | its state is called                            |
|-----|-----------------------------------------------------------------------------------------------|-------------------------------------------------|-----------------------------------------------------------|------------------------------------------------|
|     | a) Rise                                                                                       | b) Decay                                        | c) Propagation                                            | d) Changing                                    |
| 7)  | Odd parity of word a) OR                                                                      |                                                 | ntly tested by<br>c) NOR                                  |                                                |
| 8)  | The ga<br>a) EX-NOR                                                                           |                                                 |                                                           | d) NOR                                         |
| 9)  | Applying Demorga                                                                              | n's theorem to exp                              | pression                                                  |                                                |
|     | $\overline{\overline{X+Y}}_{+}\overline{\overline{Z}}$ , we get                               |                                                 |                                                           |                                                |
|     | a) $(X + Y)Z$                                                                                 | b) $(\overline{X} + \overline{Y})Z$             | c) $(X+Y)\overline{Z}$                                    | d) $(\overline{X} + \overline{Y})\overline{Z}$ |
| 10) | The Boolean expressingle gate.                                                                |                                                 |                                                           |                                                |
|     | a) NAND                                                                                       | •                                               | •                                                         | •                                              |
| 11) | For the SOP expre                                                                             | ession AB+ $\overline{\mathtt{B}}\mathtt{C}$ ,_ | zero's                                                    | are in truth tables                            |
|     | output column.                                                                                | h) One                                          | a) Faux                                                   | d) Five                                        |
| 40) | a) Zero                                                                                       |                                                 |                                                           |                                                |
| 12) | a) Combinational c) Latches                                                                   | Circuits                                        |                                                           |                                                |
| 13) | <ul><li>A ripple counter's s</li><li>a) Each flip flop</li><li>c) The flip flops or</li></ul> |                                                 | the propagation d b) All flip flops an d) Only circuit ga | d gates                                        |
| 14) | Internal propagat                                                                             | •                                               | nchronous count                                           | er is removed by                               |
|     | a) Ripple                                                                                     |                                                 | c) Modulus                                                | d) Synchronous                                 |



| Seat |  |
|------|--|
| No.  |  |

# S.E. (Part – II) (Biomedical Engg.) (New CBCS) Examination, 2018 DIGITAL DESIGN

Day and Date: Tuesday, 22-5-2018 Max. Marks: 56

Time: 10.00 a.m. to 1.00 p.m.

#### SECTION - I

2. Attempt any four questions :

 $(4 \times 4 = 16)$ 

- 1) Define following terms with respect to flip flops.
  - a) Set up time
  - b) Propagation delays
  - c) Hold time
  - d) Clock pulse width
- 2) Define and differentiate between various types of flip flops.
- 3) Implement the expression using a multiplexer

$$f(A, B, C, D) = \sum m(0, 2, 3, 6, 8, 9, 12, 14).$$

- 4) What are the advantages of an edge triggered flip flop over a level triggered device?
- 5) With the help of diagram explain working of ECL.

3. Attempt any 2 questions:

- 1) With the help of logic diagram explain working of master-slave J-K flip flop.
- 2) Write a short note on:
  - a) TTL
  - b) DTL
- 3) Design a 4:1 multiplexer using 8:1 multiplexer.

#### SECTION - II

4. Attempt any four questions.

 $(4 \times 4 = 16)$ 

- 1) Design a half subtractor with truth table and logic diagram.
- 2) Perform following operation.
  - a)  $(7F)_{16} + (BA)_{16} = (?)_{16}$
  - b)  $(247.36)_8 = (?)_{16}$
  - c)  $(327.89)_{10} = (?)_{BCD}$
  - d)  $(23)_8 + (67)_8 = (?)_2$
- 3) Explain working of successive approximation A to D conversion with necessary diagram.
- 4) Write down the count sequence of 3 bit binary down counter. Design a ripple counter using flip flops for this sequence.
- 5) With the help of diagram explain working of basic cell IC bipolar RAM.
- 5. Attempt any two questions.

- 1) Explain the operation of bidirectional shift register.
- 2) Draw write cycle waveforms of memory device and define following terms.
  - a) Write cycle time
  - b) Read cycle time
  - c) Data setup time
  - d) Data hold time
- 3) Design a 3 bit asynchronous counter using J-K flip flop.



**SLR-TC - 443** 

| Seat |  |
|------|--|
| No.  |  |

Set Q

# S.E. (Part – II) (Biomedical Engg.) (New CBCS) Examination, 2018 DIGITAL DESIGN

| -           | d Date : Tuesday,<br>10.00 a.m. to 1.00           |                                                                               |                                                                         | Max.                                         | Marks: 70           |
|-------------|---------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------|---------------------|
| 1           | 2) <b>A</b>                                       | <b>0 minutes</b> in Ans<br>arries <b>one</b> mark.<br><b>Answer MCQ/Obj</b> e | wisory. It should wer Book Page No ective type quest to mention, Q.P. S | o. <b>3. Each</b> qu<br>i <b>ons on Pa</b> g | uestion<br>ge No. 3 |
| <b>.</b> .: | 00.14                                             | MCQ/Objective T                                                               | ype Questions                                                           |                                              |                     |
| Duratio     | n : 30 Minutes                                    |                                                                               |                                                                         |                                              | Marks: 14           |
| 1. Ch       | oose the correct ar                               | nswer:                                                                        |                                                                         |                                              | (1×14=14)           |
| 1)          | The gas a) EX-NOR                                 |                                                                               | XOR gate.<br>c) NAND                                                    | d) NOR                                       |                     |
| 2)          | Applying Demorga                                  | an's theorem to ex                                                            | pression                                                                |                                              |                     |
|             | $\overline{\overline{X+Y}+\overline{Z}}$ , we get |                                                                               |                                                                         |                                              |                     |
|             | a) $(X + Y)Z$                                     |                                                                               | b) $(\overline{X} + \overline{Y})Z$                                     |                                              |                     |
|             | c) $(X+Y)\overline{Z}$                            |                                                                               | $d) \ \left(\overline{X} + \overline{Y}\right)\overline{Z}$             |                                              |                     |
| 3)          | The Boolean expr                                  | ession $X = \overline{A} + \overline{B} + \overline{C}$                       | is logically equiva                                                     | alent to                                     |                     |
|             | single gate.<br>a) NAND                           | b) NOR                                                                        | c) AND                                                                  | d) OR                                        |                     |
| 4)          | For the SOP expi                                  | ression AB+BC,_                                                               | zero's                                                                  | are in truth                                 | tables              |
|             | output column.<br>a) Zero                         | b) One                                                                        | c) Four                                                                 | d) Five                                      |                     |
| 5)          | a) Combinational c) Latches                       |                                                                               | aster among the fo<br>b) Sequential circ<br>d) Flip flop                | •                                            |                     |

| 6)  | A ripple counter's speed is limited by a) Each flip flop c) The flip flops only with gates              | b) All flip flops and gates                               |  |  |
|-----|---------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|--|--|
| 7)  | Internal propagation delay of asy counter.                                                              | nchronous counter is removed by                           |  |  |
|     | a) Ripple b) Ring                                                                                       | c) Modulus d) Synchronous                                 |  |  |
| 8)  | a) 8 c) 4                                                                                               | ented by four minterm. b) 2 d) 3                          |  |  |
| 9)  | Extremely power dissip achieved in CMOS IC's . a) Low                                                   | ation and low cost per gate can be b) High                |  |  |
|     | c) Moderate                                                                                             | d) Negligible                                             |  |  |
| 10) | In excitation of flip flop a) T c) J-K                                                                  | next state is equal to D state.<br>b) D<br>d) R-S         |  |  |
| 11) | a) Half c) Carry look ahead                                                                             | ook ripple delay is eliminated.<br>b) Full<br>d) Parallel |  |  |
| 12) | Conversion of fractional numbers fro accomplished using a successive a) Multiplication c) Approximation | algorithm.                                                |  |  |
| 13) | The time required for a gate or in time.                                                                | verter to change its state is called                      |  |  |
|     | a) Rise b) Decay                                                                                        | c) Propagation d) Changing                                |  |  |
| 14) | Odd parity of word can be convenient a) OR b) AND                                                       | c) NOR d) XOR                                             |  |  |



| Seat |  |
|------|--|
| No.  |  |

# S.E. (Part – II) (Biomedical Engg.) (New CBCS) Examination, 2018 DIGITAL DESIGN

Day and Date: Tuesday, 22-5-2018 Max. Marks: 56

Time: 10.00 a.m. to 1.00 p.m.

#### SECTION - I

2. Attempt any four questions :

 $(4 \times 4 = 16)$ 

- 1) Define following terms with respect to flip flops.
  - a) Set up time
  - b) Propagation delays
  - c) Hold time
  - d) Clock pulse width
- 2) Define and differentiate between various types of flip flops.
- 3) Implement the expression using a multiplexer

$$f(A, B, C, D) = \sum m(0, 2, 3, 6, 8, 9, 12, 14).$$

- 4) What are the advantages of an edge triggered flip flop over a level triggered device?
- 5) With the help of diagram explain working of ECL.

3. Attempt any 2 questions:

- 1) With the help of logic diagram explain working of master-slave J-K flip flop.
- 2) Write a short note on:
  - a) TTL
  - b) DTL
- 3) Design a 4:1 multiplexer using 8:1 multiplexer.

#### SECTION - II

4. Attempt any four questions.

 $(4 \times 4 = 16)$ 

- 1) Design a half subtractor with truth table and logic diagram.
- 2) Perform following operation.
  - a)  $(7F)_{16} + (BA)_{16} = (?)_{16}$
  - b)  $(247.36)_8 = (?)_{16}$
  - c)  $(327.89)_{10} = (?)_{BCD}$
  - d)  $(23)_8 + (67)_8 = (?)_2$
- 3) Explain working of successive approximation A to D conversion with necessary diagram.
- 4) Write down the count sequence of 3 bit binary down counter. Design a ripple counter using flip flops for this sequence.
- 5) With the help of diagram explain working of basic cell IC bipolar RAM.
- 5. Attempt any two questions.

 $(6 \times 2 = 12)$ 

- 1) Explain the operation of bidirectional shift register.
- 2) Draw write cycle waveforms of memory device and define following terms.
  - a) Write cycle time
  - b) Read cycle time
  - c) Data setup time
  - d) Data hold time
- 3) Design a 3 bit asynchronous counter using J-K flip flop.

Set Q



**SLR-TC - 443** 

| Seat |  |
|------|--|
| No.  |  |

Set R

## S.E. (Part – II) (Biomedical Engg.) (New CBCS) Examination, 2018 DIGITAL DESIGN

**DIGITAL DESIGN** Day and Date: Tuesday, 22-5-2018 Max. Marks: 70 Time: 10.00 a.m. to 1.00 p.m. Instructions: 1) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book Page No. 3. Each question carries one mark. 2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page. MCQ/Objective Type Questions **Duration: 30 Minutes** Marks: 14 1. Choose the correct answer:  $(1 \times 14 = 14)$ 1) Conversion of fractional numbers from one radix to another is accomplished using a successive \_\_\_\_\_\_ algorithm. b) Addition a) Multiplication d) Integration c) Approximation 2) The time required for a gate or inverter to change its state is called \_\_ time. b) Decay a) Rise c) Propagation d) Changing 3) Odd parity of word can be conveniently tested by \_\_\_\_\_ \_\_\_\_ gate. d) XOR a) OR b) AND c) NOR 4) The \_\_\_\_\_ gate is equivalent to XOR gate. a) EX-NOR b) EX-OR c) NAND d) NOR 5) Applying Demorgan's theorem to expression  $\overline{X+Y+7}$ , we get b)  $(\overline{X} + \overline{Y})Z$ a) (X + Y)Zd)  $(\overline{X} + \overline{Y})\overline{Z}$ c)  $(X+Y)\overline{Z}$ 

| 6)   | The Boolean expresingle gate.                                     | ession $X = \overline{A} + \overline{B} + \overline{C}$ | Ō is | logically equi             | valent to              |
|------|-------------------------------------------------------------------|---------------------------------------------------------|------|----------------------------|------------------------|
|      | a) NAND                                                           | b) NOR                                                  | c)   | AND                        | d) OR                  |
| 7)   | For the SOP expre                                                 | ession AB+BC,_                                          |      | zero                       | 's are in truth tables |
|      | output column.                                                    |                                                         |      |                            |                        |
|      | a) Zero                                                           | b) One                                                  | c)   | Four                       | d) Five                |
| 8)   | oper                                                              |                                                         |      |                            |                        |
|      | <ul><li>a) Combinational (</li><li>c) Latches</li></ul>           | Circuits                                                |      | Sequential ci<br>Flip flop | rcuits                 |
| 9)   | A ripple counter's s<br>a) Each flip flop<br>c) The flip flops or |                                                         | b)   | All flip flops a           | and gates              |
| 10)  | Internal propagat                                                 |                                                         | /ncl | nronous cour               | nter is removed by     |
|      | a) Ripple                                                         | b) Ring                                                 | c)   | Modulus                    | d) Synchronous         |
| 11)  | variab                                                            | oles will be repres                                     | ent  | ed by four mir             | nterm.                 |
|      | a) 8                                                              |                                                         | b)   |                            |                        |
|      | c) 4                                                              |                                                         | d)   |                            |                        |
| 12)  | Extremelyachieved in CMOS                                         |                                                         | atio | on and low co              | ost per gate can be    |
|      | a) Low                                                            |                                                         | ,    | High                       |                        |
|      | c) Moderate                                                       |                                                         | ,    | Negligible                 |                        |
| 13)  | In excitation of                                                  | flip flop                                               |      | •                          | al to D state.         |
|      | a) T<br>c) J-K                                                    |                                                         | b)   | R-S                        |                        |
| 14)  | adder                                                             | circuits the carry                                      | ,    |                            | is eliminated          |
| ' '/ | a) Half                                                           | ondatio, the darry                                      |      | Full                       | o diffination.         |
|      | c) Carry look ahea                                                | nd                                                      | d)   | Parallel                   |                        |
|      |                                                                   |                                                         |      |                            |                        |



| Soot |  |
|------|--|
| Seat |  |
| No.  |  |

# S.E. (Part – II) (Biomedical Engg.) (New CBCS) Examination, 2018 DIGITAL DESIGN

Day and Date: Tuesday, 22-5-2018 Max. Marks: 56

Time: 10.00 a.m. to 1.00 p.m.

#### SECTION - I

2. Attempt any four questions :

 $(4 \times 4 = 16)$ 

- 1) Define following terms with respect to flip flops.
  - a) Set up time
  - b) Propagation delays
  - c) Hold time
  - d) Clock pulse width
- 2) Define and differentiate between various types of flip flops.
- 3) Implement the expression using a multiplexer

$$f(A, B, C, D) = \sum m(0, 2, 3, 6, 8, 9, 12, 14).$$

- 4) What are the advantages of an edge triggered flip flop over a level triggered device?
- 5) With the help of diagram explain working of ECL.

3. Attempt any 2 questions:

- 1) With the help of logic diagram explain working of master-slave J-K flip flop.
- 2) Write a short note on:
  - a) TTL
  - b) DTL
- 3) Design a 4:1 multiplexer using 8:1 multiplexer.

#### SECTION - II

4. Attempt any four questions.

 $(4 \times 4 = 16)$ 

- 1) Design a half subtractor with truth table and logic diagram.
- 2) Perform following operation.
  - a)  $(7F)_{16} + (BA)_{16} = (?)_{16}$
  - b)  $(247.36)_8 = (?)_{16}$
  - c)  $(327.89)_{10} = (?)_{BCD}$
  - d)  $(23)_8 + (67)_8 = (?)_2$
- 3) Explain working of successive approximation A to D conversion with necessary diagram.
- 4) Write down the count sequence of 3 bit binary down counter. Design a ripple counter using flip flops for this sequence.
- 5) With the help of diagram explain working of basic cell IC bipolar RAM.
- 5. Attempt any two questions.

- 1) Explain the operation of bidirectional shift register.
- 2) Draw write cycle waveforms of memory device and define following terms.
  - a) Write cycle time
  - b) Read cycle time
  - c) Data setup time
  - d) Data hold time
- 3) Design a 3 bit asynchronous counter using J-K flip flop.

|  | <b>SLR-TC – 443</b> |
|--|---------------------|
|--|---------------------|

| Seat | 2-4 |   |
|------|-----|---|
| No.  | Set | S |

# S.E. (Part – II) (Biomedical Engg.) (New CBCS) Examination, 2018 DIGITAL DESIGN

| Day and Date: Tuesday, 22-5-2018  Time: 10.00 a.m. to 1.00 p.m.                                                                                                                                                                                                    |                           |                                                             |                 |                    | k. Marks : 70 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-------------------------------------------------------------|-----------------|--------------------|---------------|
| Instructions: 1) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book Page No. 3. Each question carries one mark. 2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page. |                           |                                                             |                 |                    |               |
| Duratio                                                                                                                                                                                                                                                            | on : 30 Minutes           | MCQ/Objective                                               | Type Questio    | ons                | Marks: 14     |
| Duratio                                                                                                                                                                                                                                                            | iii . 50 Miiiutes         |                                                             |                 |                    | Marks . 14    |
| 1. Ch                                                                                                                                                                                                                                                              | oose the correct          | answer:                                                     |                 |                    | (1×14=14)     |
| 1)                                                                                                                                                                                                                                                                 | single gate.              | expression $X = \overline{A} + \overline{B} + \overline{B}$ |                 | ·                  |               |
| 2)                                                                                                                                                                                                                                                                 | For the SOP ex            | xpression $AB + \overline{B}C$ ,                            |                 | zero's are in trut | h tables      |
|                                                                                                                                                                                                                                                                    | output column.<br>a) Zero | b) One                                                      | c) Four         | d) Five            |               |
| 3)                                                                                                                                                                                                                                                                 |                           | pperations are more<br>nal Circuits                         |                 |                    |               |
| 4)                                                                                                                                                                                                                                                                 | a) Each flip flor         | r's speed is limited I<br>o<br>s only with gates            | b) All flip flo | ps and gates       |               |
| 5)                                                                                                                                                                                                                                                                 |                           | gation delay of as<br>ounter.                               | synchronous     | counter is remo    | oved by       |
|                                                                                                                                                                                                                                                                    | a) Ripple                 | b) Ring                                                     | c) Modulus      | d) Synch           | ronous        |
| 6) variables will be represented by four minterm.                                                                                                                                                                                                                  |                           |                                                             |                 |                    |               |
|                                                                                                                                                                                                                                                                    | a) 8                      | b) 2                                                        | c) 4            | d) 3               |               |

| 7)  | Extremely power dissipation and low cost per gate can be achieved in CMOS IC's . |                                     |                                                 |                                                |
|-----|----------------------------------------------------------------------------------|-------------------------------------|-------------------------------------------------|------------------------------------------------|
|     | <ul><li>a) Low</li><li>c) Moderate</li></ul>                                     |                                     | <ul><li>b) High</li><li>d) Negligible</li></ul> |                                                |
| 8)  | In excitation of<br>a) T<br>c) J-K                                               | flip flop (                         | next state is equal<br>b) D<br>d) R-S           | to D state.                                    |
| 9)  | a) Half c) Carry look ahea                                                       |                                     | b) Full                                         | eliminated.                                    |
| 10) | Conversion of fract accomplished usin a) Multiplication c) Approximation         | g a successive                      |                                                 |                                                |
| 11) | The time required time.                                                          | I for a gate or in                  | verter to change                                | its state is called                            |
|     | a) Rise                                                                          | b) Decay                            | c) Propagation                                  | d) Changing                                    |
| 12) | Odd parity of word a) OR                                                         |                                     | tly tested by<br>c) NOR                         |                                                |
| 13) | The ga<br>a) EX-NOR                                                              | -                                   | _                                               | d) NOR                                         |
| 14) | Applying Demorga                                                                 | n's theorem to exp                  | oression                                        |                                                |
|     | $\overline{\overline{X+Y}}_{+}\overline{\overline{Z}}$ , we get                  |                                     |                                                 |                                                |
|     | a) (X + Y)Z                                                                      | b) $(\overline{X} + \overline{Y})Z$ | c) $(X+Y)\overline{Z}$                          | d) $(\overline{X} + \overline{Y})\overline{Z}$ |



| Seat |  |
|------|--|
| No.  |  |

# S.E. (Part – II) (Biomedical Engg.) (New CBCS) Examination, 2018 DIGITAL DESIGN

Day and Date: Tuesday, 22-5-2018 Max. Marks: 56

Time: 10.00 a.m. to 1.00 p.m.

#### SECTION - I

2. Attempt any four questions:

 $(4 \times 4 = 16)$ 

- 1) Define following terms with respect to flip flops.
  - a) Set up time
  - b) Propagation delays
  - c) Hold time
  - d) Clock pulse width
- 2) Define and differentiate between various types of flip flops.
- 3) Implement the expression using a multiplexer

$$f(A, B, C, D) = \sum m(0, 2, 3, 6, 8, 9, 12, 14).$$

- 4) What are the advantages of an edge triggered flip flop over a level triggered device?
- 5) With the help of diagram explain working of ECL.

3. Attempt any 2 questions:

- 1) With the help of logic diagram explain working of master-slave J-K flip flop.
- 2) Write a short note on:
  - a) TTL
  - b) DTL
- 3) Design a 4:1 multiplexer using 8:1 multiplexer.

#### SECTION - II

4. Attempt any four questions.

 $(4 \times 4 = 16)$ 

- 1) Design a half subtractor with truth table and logic diagram.
- 2) Perform following operation.
  - a)  $(7F)_{16} + (BA)_{16} = (?)_{16}$
  - b)  $(247.36)_8 = (?)_{16}$
  - c)  $(327.89)_{10} = (?)_{BCD}$
  - d)  $(23)_8 + (67)_8 = (?)_2$
- 3) Explain working of successive approximation A to D conversion with necessary diagram.
- 4) Write down the count sequence of 3 bit binary down counter. Design a ripple counter using flip flops for this sequence.
- 5) With the help of diagram explain working of basic cell IC bipolar RAM.
- 5. Attempt any two questions.

 $(6 \times 2 = 12)$ 

- 1) Explain the operation of bidirectional shift register.
- 2) Draw write cycle waveforms of memory device and define following terms.
  - a) Write cycle time
  - b) Read cycle time
  - c) Data setup time
  - d) Data hold time
- 3) Design a 3 bit asynchronous counter using J-K flip flop.

Set S

## CLD TC

|             |                                                     |                                            |                                                                                | SLN-                                          | 16 – 444              |
|-------------|-----------------------------------------------------|--------------------------------------------|--------------------------------------------------------------------------------|-----------------------------------------------|-----------------------|
| Seat<br>No. |                                                     |                                            |                                                                                |                                               | Set P                 |
| S           | , , ,                                               | _                                          | g.) (CBCS) (New<br>ANALYSIS ANI                                                | ,                                             | •                     |
| -           | nd Date : Thursda<br>: 10.00 a.m. to 1.0            | •                                          |                                                                                | Tot                                           | al Marks : 70         |
|             | ,                                                   | 30 minutes in carries one man Answer MCQ/0 | ompulsory. It shad Answer Book Pagerk.  Objective type quade get to mention, Q | ge No. <b>3. Eac</b><br>u <b>estions on P</b> | h question Page No. 3 |
| Durati      | on : 30 Minutes                                     | MCQ/Objectiv                               | e Type Question                                                                | s                                             | Marks : 14            |
| 1. C        | hoose the correct                                   | answer:                                    |                                                                                |                                               | (1×14=14)             |
| 1           | ) The current gair<br>a) $\beta_1$ .( $\beta_2$ /2) |                                            | on connection is _ c) $\beta_1/\beta_2$                                        |                                               |                       |
| 2           | ) configura<br>a) Fixed bias<br>c) Emitter follov   |                                            | vest output impeda<br>b) Voltage di<br>d) Emitter-co                           | vider                                         |                       |
| 3           | ) Typical value of<br>a) > 1<br>c) undefined        | current gain of                            | a CB configuration b) between 1 d) between 1                                   | and 50                                        | _                     |
| 4           | ) Amplifier gain fo<br>should be minim<br>a) 43     |                                            | oscillations to obe<br>—<br>c) 10                                              | ey Barkhausen'<br>d) 29                       | 's criteria           |

5) \_\_\_\_\_ component is used in Hartley oscillator feedback system.

6) The \_\_\_\_\_ configuration is frequently used for impedance matching.

7) \_\_\_\_\_ type of power amplifier is biased for operation at less than  $180^{\circ}$ 

b) Capacitor

a) Class A c) Class C

of the cycle.

a) Inductor

a) fixed bias

c) emitter follower

b) Class B or AB

b) voltage divider bias

d) collector feedback

c) Transistor

d) Resistor

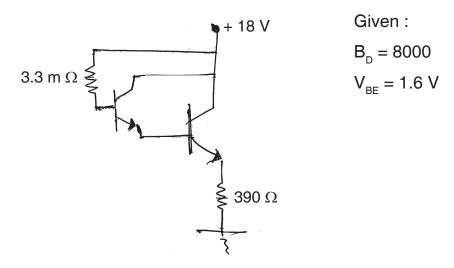
| 8)  | In class B operation active the maximum a) 0.5 |                                       | d by the output                | transis   | stor?                |
|-----|------------------------------------------------|---------------------------------------|--------------------------------|-----------|----------------------|
| 9)  | In an unbiased em model.                       | itter bias configura                  | ation h <sub>ie</sub> replaces | S         | in the ${ m V_{_e}}$ |
|     | a) $V_e$                                       | b) β                                  | c) $\beta V_e$                 | d)        | I <sub>b</sub>       |
| 10) | Op-amps used as configuration.                 | a high and low                        | pass filter circui             | its em    | ploy                 |
|     | a) non-inverting                               |                                       | b) comparator                  |           |                      |
|     | c) open loop                                   |                                       | d) inverting                   |           |                      |
| 11) | ampli                                          | fier is used as fred                  | quency multiplie               | r.        |                      |
|     | a) Class A                                     | b) Class B                            | c) Class C                     | d)        | Class AB             |
| 12) | amon                                           | g the following am                    | plifier circuit exh            | nibit the | e output voltage     |
|     | in the form of phas                            | e inversion.                          |                                |           |                      |
|     | a) Adder                                       |                                       | b) Subtractor                  |           |                      |
|     | c) Integrator                                  |                                       | d) Differentiato               | r         |                      |
| 13) | A circuit whose out signals is considered      |                                       |                                |           | ween the input       |
|     | a) common mode                                 |                                       | b) darlington                  |           |                      |
|     | c) differential                                |                                       | d) operational                 |           |                      |
| 14) | The efficiency of a 15V and an output          |                                       | -                              | nplifier  | for a supply of      |
|     | a) 25%                                         | · · · · · · · · · · · · · · · · · · · |                                | d)        | 78.5%                |
|     |                                                |                                       |                                |           |                      |



| Seat |  |
|------|--|
| No.  |  |

# S.E. (Part – II) (Biomedical Engg.) (CBCS) (New) Examination, 2018 ELECTRONIC CIRCUITS ANALYSIS AND DESIGN – II

Day and Date: Thursday, 24-5-2018 Marks: 56


Time: 10.00 a.m. to 1.00 p.m.

#### SECTION - I

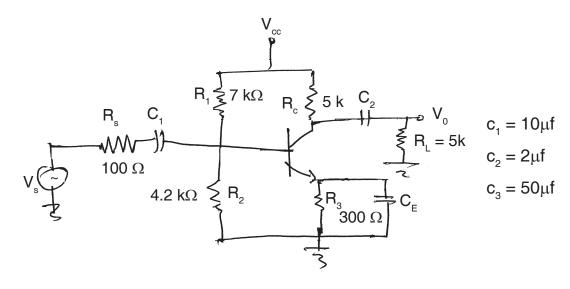
### 2. Attempt any four questions :

 $(4 \times 4 = 16)$ 

- 1) With the help of diagram explain working of BJT Darlington pair circuit and mention its advantages.
- 2) Explain working and analyze class B power amplifier.
- 3) Calculate the DC bias voltages and currents in the following circuits.



- 4) Draw and explain working of RC coupled oscillator with its frequency response.
- 5) Compare between class B amplifier with class C amplifier.




3. Attempt any two questions:

 $(6 \times 2 = 12)$ 

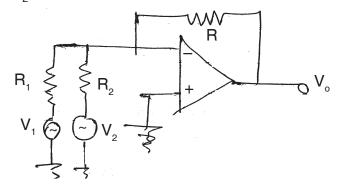
1) For the common emitter BJT amplifier calculate the values of f<sub>L</sub> and f<sub>H</sub> and midband voltage gain amid. Assume following parameter.

$$\beta$$
 = 80, g  $_{m}$  = 50  $\mu A/V,~r_{_{\pi}}$  = 1.3 kΩ,  $C_{_{\pi}}$  = 15 pf  $~c_{_{\mu}}$  = 1pf.



- 2) Compare different types at power amplifier based on following factors :
  - a) Conduction angle
  - b) Position of Q point
  - c) Efficiency
  - d) Distortion.
- 3) Describe the effect of coupling, bypass and load capacitors on low frequency response of BJT.

SECTION - II


4. Attempt any four questions:

 $(4 \times 4 = 16)$ 

- 1) Define and differentiate between linear amplifier and error amplifier.
- 2) List ideal characteristics of op-amp.



- 3) Draw the circuit for basic differentiator using op-amp and find the expression for the output voltage.
- 4) Find the output voltage for the circuit shown if  $R_f=10k\Omega,\ R_1=2k\Omega,\ R_2=5k\Omega.$



5) Differentiate between first order and second order low pass butterworth filter.

#### 5. Attempt any 2 questions:

- 1) Design an instrumentation amplifier of gain 1000 for ECG recording machine.
- 2) With the help of circuit diagrams and waveforms explain application of op-amp as zero crossing detector.
- 3) Write a short note on:
  - a) Op-amp as Schmitt trigger working and application.
  - b) Definition of CMRR, PSRR, Shield drive.

## **SLR-TC - 444**

| Seat | Cot | Q |
|------|-----|---|
| No.  | Set | u |

# S.E. (Part – II) (Biomedical Engg.) (CBCS) (New) Examination, 2018 ELECTRONIC CIRCUITS ANALYSIS AND DESIGN – II

| -        | nd Date : Thursda<br>10.00 a.m. to 1.0 | -                                        |                                                                                                                    | Total Marks:                                                                                           | 70     |
|----------|----------------------------------------|------------------------------------------|--------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--------|
|          | ,                                      | 30 minutes in carries one ma Answer MCQ/ | Answer Book Page<br>rk.<br><b>Objective type que</b>                                                               | ould be solved in firste<br>e No. 3. Each question<br>estions on Page No. 3<br>P. Set (P/Q/R/S) on Top | )<br>} |
|          |                                        | MCQ/Objective                            | ve Type Questions                                                                                                  |                                                                                                        |        |
| Duration | on : 30 Minutes                        |                                          |                                                                                                                    | Marks:                                                                                                 | 14     |
| 1. Cł    | noose the correct                      | answer:                                  |                                                                                                                    | (1×14=1                                                                                                | 4)     |
| 1)       |                                        | mum power dissi                          | tion of V <sub>cc</sub> should th<br>pated by the output<br>c) 0.707                                               | ne level of V <sub>L</sub> (P) be to transistor?                                                       | ,      |
| 2)       | model.                                 |                                          |                                                                                                                    | s in the V <sub>e</sub>                                                                                |        |
| 3)       | · ·                                    | as a high and                            | <ul> <li>c) βV<sub>e</sub></li> <li>low pass filter circus</li> <li>b) comparator</li> <li>d) inverting</li> </ul> | iits employ                                                                                            |        |
| 4)       | ) an                                   | nplifier is used as                      | s frequency multiplie                                                                                              | er.                                                                                                    |        |
| 5)       | ,                                      | nong the following                       | <ul><li>c) Class C</li><li>g amplifier circuit ext</li><li>b) Subtractor</li><li>d) Differentiato</li></ul>        | nibit the output voltage                                                                               |        |
| 6)       |                                        | dered to be                              |                                                                                                                    |                                                                                                        |        |

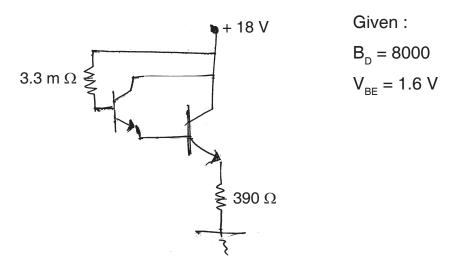
| 7)  | The efficiency of a 15V and an output                                            |                      | •                                                                                         | ifier for a supply of       |
|-----|----------------------------------------------------------------------------------|----------------------|-------------------------------------------------------------------------------------------|-----------------------------|
|     | a) 25%                                                                           | b) 33.3%             | c) 50%                                                                                    | d) 78.5%                    |
| 8)  | The current gain for                                                             | r the Darlington co  | onnection is                                                                              | I) 0 /0                     |
|     | a) $\beta_1 \cdot (\beta_2/2)$                                                   | b) $\beta_1.\beta_2$ | c) $\beta_1/\beta_2$                                                                      | a) $\beta_2/\beta_1$        |
| 9)  | <ul><li>configuratio</li><li>a) Fixed bias</li><li>c) Emitter follower</li></ul> |                      | <ul><li>output impedance</li><li>b) Voltage divider</li><li>d) Emitter-collecte</li></ul> | r                           |
| 10) | Typical value of cu<br>a) > 1<br>c) undefined                                    | rrent gain of a Cl   | B configuration is _<br>b) between 1 and<br>d) between 100 a                              | 150                         |
| 11) | Amplifier gain for F should be minimum                                           | =                    | illations to obey Ba                                                                      | arkhausen's criteria        |
|     | a) 43                                                                            | b) 4                 | c) 10                                                                                     | d) 29                       |
| 12) | componen                                                                         | t is used in Hartley | y oscillator feedbac                                                                      | ck system.                  |
|     | a) Inductor                                                                      | b) Capacitor         | c) Transistor                                                                             | d) Resistor                 |
| 13) | The co<br>a) fixed bias<br>c) emitter follower                                   |                      | uently used for imp<br>b) voltage divider<br>d) collector feedb                           | bias                        |
| 14) | type of                                                                          | power amplifier is   | biased for operation                                                                      | on at less than $180^\circ$ |
|     | of the cycle.                                                                    |                      |                                                                                           |                             |
|     | a) Class A                                                                       |                      | b) Class B or AB                                                                          |                             |
|     | c) Class C                                                                       |                      | d) Class D                                                                                |                             |
|     |                                                                                  |                      |                                                                                           |                             |
|     |                                                                                  |                      |                                                                                           |                             |



| Seat |  |
|------|--|
| No.  |  |

# S.E. (Part – II) (Biomedical Engg.) (CBCS) (New) Examination, 2018 ELECTRONIC CIRCUITS ANALYSIS AND DESIGN – II

Day and Date: Thursday, 24-5-2018 Marks: 56


Time: 10.00 a.m. to 1.00 p.m.

#### SECTION - I

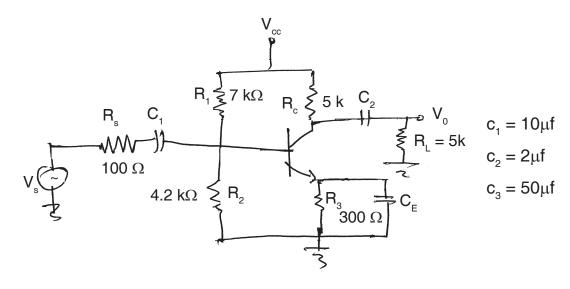
### 2. Attempt any four questions:

 $(4 \times 4 = 16)$ 

- 1) With the help of diagram explain working of BJT Darlington pair circuit and mention its advantages.
- 2) Explain working and analyze class B power amplifier.
- 3) Calculate the DC bias voltages and currents in the following circuits.



- 4) Draw and explain working of RC coupled oscillator with its frequency response.
- 5) Compare between class B amplifier with class C amplifier.




3. Attempt any two questions:

 $(6 \times 2 = 12)$ 

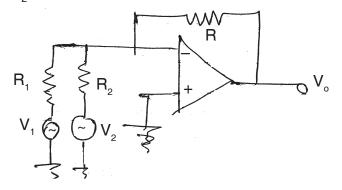
1) For the common emitter BJT amplifier calculate the values of f<sub>L</sub> and f<sub>H</sub> and midband voltage gain amid. Assume following parameter.

$$\beta$$
 = 80, g  $_{m}$  = 50  $\mu A/V,~r_{_{\pi}}$  = 1.3 kΩ,  $C_{_{\pi}}$  = 15 pf  $~c_{_{\mu}}$  = 1pf.



- 2) Compare different types at power amplifier based on following factors :
  - a) Conduction angle
  - b) Position of Q point
  - c) Efficiency
  - d) Distortion.
- 3) Describe the effect of coupling, bypass and load capacitors on low frequency response of BJT.

SECTION - II


4. Attempt any four questions:

 $(4 \times 4 = 16)$ 

- 1) Define and differentiate between linear amplifier and error amplifier.
- 2) List ideal characteristics of op-amp.



- 3) Draw the circuit for basic differentiator using op-amp and find the expression for the output voltage.
- 4) Find the output voltage for the circuit shown if  $R_f=10k\Omega,\ R_1=2k\Omega,\ R_2=5k\Omega.$



5) Differentiate between first order and second order low pass butterworth filter.

#### 5. Attempt any 2 questions:

- 1) Design an instrumentation amplifier of gain 1000 for ECG recording machine.
- 2) With the help of circuit diagrams and waveforms explain application of op-amp as zero crossing detector.
- 3) Write a short note on:
  - a) Op-amp as Schmitt trigger working and application.
  - b) Definition of CMRR, PSRR, Shield drive.

|--|--|

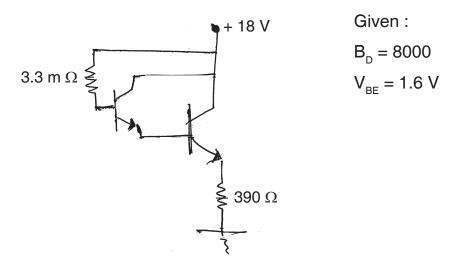
|             |                                                           |                                             | SLR-1C - 444                                                                                                                                                                  | 4  |
|-------------|-----------------------------------------------------------|---------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Seat<br>No. |                                                           |                                             | Set R                                                                                                                                                                         |    |
| S.          | ` , `                                                     |                                             | ngg.) (CBCS) (New) Examination, 2018<br>IS ANALYSIS AND DESIGN – II                                                                                                           |    |
| -           | nd Date : Thursday<br>10.00 a.m. to 1.00                  |                                             | Total Marks : 7                                                                                                                                                               | '0 |
|             | 2)                                                        | 30 minutes i<br>carries one m<br>Answer MCC | compulsory. It should be solved in first in Answer Book Page No. 3. Each question park.  2/Objective type questions on Page No. 3 orget to mention, Q.P. Set (P/Q/R/S) on Top |    |
| Duratio     | on : 30 Minutes                                           | MCQ/Objec                                   | tive Type Questions  Marks: 1                                                                                                                                                 | 4  |
| 1. Ch       | oose the correct a                                        | answer:                                     | (1×14=14                                                                                                                                                                      | 4) |
|             | a) Inductor                                               | b) Capacito                                 | Hartley oscillator feedback system. or c) Transistor d) Resistor s frequently used for impedance matching.                                                                    |    |
|             | <ul><li>a) fixed bias</li><li>c) emitter follow</li></ul> | er                                          | <ul><li>b) voltage divider bias</li><li>d) collector feedback</li></ul>                                                                                                       |    |
| 3)          | of the cycle. a) Class A c) Class C                       | of power ampl                               | ifier is biased for operation at less than 180° b) Class B or AB d) Class D                                                                                                   |    |
| 4)          | In class B opera                                          |                                             | iction of V <sub>CC</sub> should the level of V <sub>L</sub> (P) be to sipated by the output transistor?  c) 0.707 d) 1                                                       |    |
| 5)          | In an unbiased e<br>model.<br>a) V <sub>e</sub>           | mitter bias cor $\beta$                     | nfiguration $h_{ie}$ replaces in the $V_{e}$ c) $\beta V_{e}$ d) $I_{b}$                                                                                                      |    |
| 6)          | -                                                         | as a high and                               | b) comparator d) inverting                                                                                                                                                    |    |

| 7)   | ampli                                              | fier is used as fred         | que  | ncy multiplier.             |     |                   |
|------|----------------------------------------------------|------------------------------|------|-----------------------------|-----|-------------------|
|      | a) Class A                                         |                              |      |                             | d)  | Class AB          |
| 8)   | amon                                               | g the following am           | plif | ier circuit exhibit         | the | e output voltage  |
|      | in the form of phas                                | e inversion.                 |      |                             |     |                   |
|      | a) Adder                                           |                              | ,    | Subtractor                  |     |                   |
|      | c) Integrator                                      |                              | ,    | Differentiator              |     |                   |
| 9)   | A circuit whose our signals is consider            |                              |      |                             |     | veen the input    |
|      | a) common mode                                     |                              |      | darlington                  |     |                   |
|      | c) differential                                    |                              | d)   | operational                 |     |                   |
| 10)  | The efficiency of a 15V and an output              | of $V/(D) = 10 V/i$          | 0    |                             |     |                   |
|      | a) 25%                                             | b) 33.3%                     | c)   | 50%                         | d)  | 78.5%             |
| 11)  | The current gain for a) $\beta_1$ .( $\beta_2$ /2) | or the Darlington c          | onr  | ection is                   |     |                   |
|      | a) $\beta_1 \cdot (\beta_2/2)$                     | b) $\beta_1.\beta_2$         | c)   | $\beta_1/\beta_2$           | d)  | $\beta_2/\beta_1$ |
| 12)  | configuratio                                       | ns has the lowest            | ou   | put impedance.              |     |                   |
|      | a) Fixed bias                                      |                              | b)   | Voltage divider             | •   |                   |
|      | c) Emitter follower                                | •                            | d)   | Emitter-collecte            | er  |                   |
| 13)  | Typical value of cu                                | rrent gain of a C            |      | _                           |     |                   |
|      | <ul><li>a) &gt; 1</li><li>c) undefined</li></ul>   |                              | ,    | between 1 and between 100 a |     |                   |
| 4.4\ | •                                                  | 00 mln n n n n n 1 n 1 n n n | ,    |                             |     |                   |
| 14)  | Amplifier gain for F should be minimur             |                              | ılla | lions to obey Ba            | rkn | ausen s criteria  |
|      | a) 43                                              | b) 4                         | c)   | 10                          | d)  | 29                |
|      |                                                    |                              |      |                             |     |                   |
|      |                                                    |                              |      |                             |     |                   |



| Seat |  |
|------|--|
| No.  |  |

# S.E. (Part – II) (Biomedical Engg.) (CBCS) (New) Examination, 2018 ELECTRONIC CIRCUITS ANALYSIS AND DESIGN – II


Day and Date: Thursday, 24-5-2018 Marks: 56

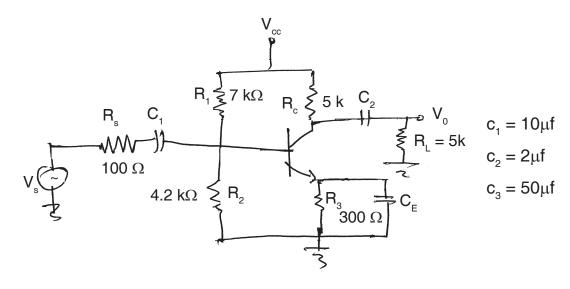
Time: 10.00 a.m. to 1.00 p.m.

#### SECTION - I

#### 2. Attempt any four questions:

- 1) With the help of diagram explain working of BJT Darlington pair circuit and mention its advantages.
- 2) Explain working and analyze class B power amplifier.
- 3) Calculate the DC bias voltages and currents in the following circuits.




- 4) Draw and explain working of RC coupled oscillator with its frequency response.
- 5) Compare between class B amplifier with class C amplifier.



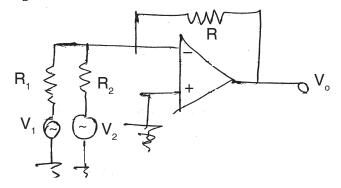
 $(6 \times 2 = 12)$ 

1) For the common emitter BJT amplifier calculate the values of f<sub>L</sub> and f<sub>H</sub> and midband voltage gain amid. Assume following parameter.

$$\beta$$
 = 80, g  $_{m}$  = 50  $\mu A/V,~r_{_{\pi}}$  = 1.3 kΩ,  $C_{_{\pi}}$  = 15 pf  $~c_{_{\mu}}$  = 1pf.



- 2) Compare different types at power amplifier based on following factors :
  - a) Conduction angle
  - b) Position of Q point
  - c) Efficiency
  - d) Distortion.
- 3) Describe the effect of coupling, bypass and load capacitors on low frequency response of BJT.


SECTION - II

4. Attempt any four questions:

- 1) Define and differentiate between linear amplifier and error amplifier.
- 2) List ideal characteristics of op-amp.



- 3) Draw the circuit for basic differentiator using op-amp and find the expression for the output voltage.
- 4) Find the output voltage for the circuit shown if  $R_f=10k\Omega,\ R_1=2k\Omega,\ R_2=5k\Omega.$



5) Differentiate between first order and second order low pass butterworth filter.

#### 5. Attempt any 2 questions:

- 1) Design an instrumentation amplifier of gain 1000 for ECG recording machine.
- 2) With the help of circuit diagrams and waveforms explain application of op-amp as zero crossing detector.
- 3) Write a short note on:
  - a) Op-amp as Schmitt trigger working and application.
  - b) Definition of CMRR, PSRR, Shield drive.



| Seat | Cot |   |
|------|-----|---|
| No.  | Set | 5 |

# S.E. (Part – II) (Biomedical Engg.) (CBCS) (New) Examination, 2018 ELECTRONIC CIRCUITS ANALYSIS AND DESIGN – II

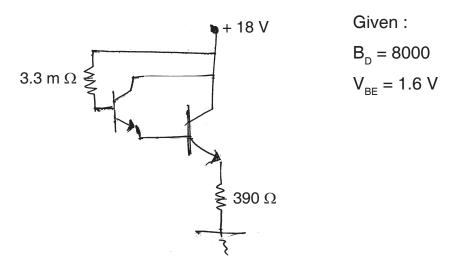
| -       | nd Date : Thursday<br>10.00 a.m. to 1.00        |                                                                             |                                                                                                               | Tota                               | al Marks : 70        |
|---------|-------------------------------------------------|-----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|------------------------------------|----------------------|
|         | 2)                                              | <b>30 minutes</b> in Ar<br>carries <b>one</b> mark.<br><b>Answer MCQ/Ob</b> | pulsory. It shounswer Book Page<br>jective type ques<br>t to mention, Q.P.                                    | No. <b>3. Each</b><br>stions on Pa | n question age No. 3 |
|         |                                                 | MCQ/Objective                                                               | Type Questions                                                                                                |                                    |                      |
| Duratio | on: 30 Minutes                                  | •                                                                           |                                                                                                               |                                    | Marks: 14            |
| 1. Ch   | oose the correct a                              | answer:                                                                     |                                                                                                               |                                    | (1×14=14)            |
| ·       | configuration. a) non-inverting c) open loop    | ·                                                                           | <ul><li>pass filter circuits</li><li>b) comparator</li><li>d) inverting</li><li>equency multiplier.</li></ul> | . ,                                |                      |
| ۷_      |                                                 |                                                                             | c) Class C                                                                                                    |                                    | AB                   |
| 3)      | in the form of pha<br>a) Adder<br>c) Integrator |                                                                             | mplifier circuit exhib<br>b) Subtractor<br>d) Differentiator                                                  |                                    | voltage              |
| 4)      |                                                 | ered to be                                                                  | ial to the difference type of amplification d) operational                                                    |                                    | e input              |
| 5)      | •                                               | a transformer co<br>ut of V(P) = 10 V<br>b) 33.3%                           | upled class A amp                                                                                             | olifier for a s                    |                      |
| 6)      | _                                               | _                                                                           | connection is<br>c) $\beta_1/\beta_2$                                                                         |                                    |                      |

| 7)  | ,                                                 |                                 | t output impedance. b) Voltage divider d) Emitter-collecter |                                                         |             |          |                 |
|-----|---------------------------------------------------|---------------------------------|-------------------------------------------------------------|---------------------------------------------------------|-------------|----------|-----------------|
| 8)  | Typical value of cu<br>a) > 1<br>c) undefined     | rrent gain of a Cl              | b)                                                          | onfiguration is _<br>between 1 and<br>between 100 a     | 50          |          |                 |
| 9)  | Amplifier gain for R should be minimum a) 43      |                                 |                                                             | tions to obey Ba                                        | ırkha<br>d) |          | criteria        |
| 10) | component                                         | t is used in Hartley            | ,<br>( 0                                                    | scillator feedbac                                       | ck sy       | ystem.   |                 |
| 11) | The co<br>a) fixed bias<br>c) emitter follower    | nfiguration is frequ            | b)                                                          | ntly used for imp<br>voltage divider<br>collector feedb | bias        |          | ching.          |
| 12) | type of of the cycle. a) Class A c) Class C       | power amplifier is              | b)                                                          | sed for operation<br>Class B or AB<br>Class D           | n at        | less tha | n 180°          |
| 13) | In class B operatio active the maximur a) 0.5     | n power dissipate               | d b                                                         | 00                                                      |             | tor?¯    | be to           |
| 14) | In an unbiased emi<br>model.<br>a) V <sub>e</sub> | tter bias configurable) $\beta$ |                                                             | n h <sub>ie</sub> replaces<br>βV <sub>e</sub>           | d)          |          | the $V_{\rm e}$ |
|     |                                                   |                                 |                                                             |                                                         |             |          |                 |



| Seat |  |
|------|--|
| No.  |  |

# S.E. (Part – II) (Biomedical Engg.) (CBCS) (New) Examination, 2018 ELECTRONIC CIRCUITS ANALYSIS AND DESIGN – II


Day and Date: Thursday, 24-5-2018 Marks: 56

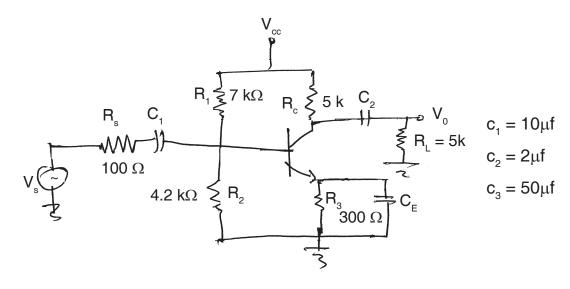
Time: 10.00 a.m. to 1.00 p.m.

#### SECTION - I

#### 2. Attempt any four questions :

- 1) With the help of diagram explain working of BJT Darlington pair circuit and mention its advantages.
- 2) Explain working and analyze class B power amplifier.
- 3) Calculate the DC bias voltages and currents in the following circuits.




- 4) Draw and explain working of RC coupled oscillator with its frequency response.
- 5) Compare between class B amplifier with class C amplifier.



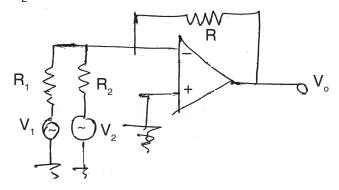
 $(6 \times 2 = 12)$ 

1) For the common emitter BJT amplifier calculate the values of f<sub>L</sub> and f<sub>H</sub> and midband voltage gain amid. Assume following parameter.

$$\beta$$
 = 80, g  $_{m}$  = 50  $\mu A/V,~r_{_{\pi}}$  = 1.3 kΩ,  $C_{_{\pi}}$  = 15 pf  $~c_{_{\mu}}$  = 1pf.



- 2) Compare different types at power amplifier based on following factors :
  - a) Conduction angle
  - b) Position of Q point
  - c) Efficiency
  - d) Distortion.
- 3) Describe the effect of coupling, bypass and load capacitors on low frequency response of BJT.


SECTION - II

4. Attempt any four questions :

- 1) Define and differentiate between linear amplifier and error amplifier.
- 2) List ideal characteristics of op-amp.



- 3) Draw the circuit for basic differentiator using op-amp and find the expression for the output voltage.
- 4) Find the output voltage for the circuit shown if  $R_f=10k\Omega,\ R_1=2k\Omega,\ R_2=5k\Omega.$



5) Differentiate between first order and second order low pass butterworth filter.

#### 5. Attempt any 2 questions:

- 1) Design an instrumentation amplifier of gain 1000 for ECG recording machine.
- 2) With the help of circuit diagrams and waveforms explain application of op-amp as zero crossing detector.
- 3) Write a short note on:
  - a) Op-amp as Schmitt trigger working and application.
  - b) Definition of CMRR, PSRR, Shield drive.

| Seat | •   |   |
|------|-----|---|
| No.  | Set | Р |
|      |     | _ |

### S.E. (Part – II) (Biomedical Engg.) (Old CGPA) Examination, 2018 TRANSDUCER IN BIOMEDICAL INSTRUMENTATION

Day and Date: Tuesday, 15-5-2018 Max. Marks: 70

Time: 10.00 a.m. to 1.00 p.m.

Instructions: 1) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book Page No. 3. Each question carries one mark.

> 2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

|         |                                    | MCQ/Objective 1    | Type Questions                                          |                               |
|---------|------------------------------------|--------------------|---------------------------------------------------------|-------------------------------|
| Duratio | on: 30 Minutes                     | •                  |                                                         | Marks : 14                    |
| 1. Ch   | noose the correct ar               | nswer:             |                                                         | (14×1=14)                     |
| 1)      | the measuring sys                  | tem does not resp  | •                                                       | ut quantity to which d) Error |
| 2)      | they measure an o                  | object without med | ulled as<br>chanical coupling.<br>c) Loading            |                               |
| 3)      | Quartz is an<br>provided with meta | , the surfa        | aces on which char                                      | ge accumulates are            |
| 4)      | Standard electrode a) Voltage      |                    |                                                         | rement of d) Deposited ion    |
| 5)      | redox reaction.                    |                    | ovement of electro                                      | ns produced during d) Optical |
| 6)      | a) LED                             | -                  | otical sensor.<br>c) Transistor                         | d) All of above               |
| 7)      | a) Pressure to dis                 | placement          | e in bourdon tubes. b) Pressure to vo d) Pressure to fo | oltage                        |

a) Systematic b) Gross c) Random d) Kinetic

b) Dynamic measurement

d) Both a) and b)

a) Static measurement

c) Transient measurement

14) \_\_\_\_\_error is caused by careless handling.



| Seat |  |
|------|--|
| No.  |  |

### S.E. (Part – II) (Biomedical Engg.) (Old CGPA) Examination, 2018 TRANSDUCER IN BIOMEDICAL INSTRUMENTATION

Day and Date: Tuesday, 15-5-2018 Marks: 56

Time: 10.00 a.m. to 1.00 p.m.

#### SECTION - I

#### 2. Attempt any four questions :

 $(4 \times 4 = 16)$ 

- 1) Distinguish between: (a) passive and active transducer (b) static and dynamic characteristics.
- 2) Define the dynamic error of a first order system and derive the expression for the same when it is subjected to standard input signals.
- 3) Define gauge factor and distinguish between bonded and unbonded strain gauges.
- 4) With the help of diagram explain electrode electrolyte interface and define half cell potential.
- 5) Explain working of LVDT with the help of neat diagram.

#### 3. Attempt any two questions:

 $(6 \times 2 = 12)$ 

- 1) Define motion artifacts. Explain various types of body surface electrodes with their application.
- 2) Write a short note on: (a) types of diaphragms (b) types and material of belows (c) types of bourdon tubes.
- 3) Describe construction, working and application of microelectrodes.

#### SECTION - II

#### 4. Attempt any four questions:

 $(4 \times 4 = 16)$ 

- 1) Define pH and describe working of pH electrode.
- 2) Describe designing principles in fabrication of fiber optic sensors.
- 3) Explain physiology of acid base balance and blood gas analysis.
- 4) Explain significance of O<sub>2</sub> cell and mention its applications.
- 5) Describe transconduction phenomenon for biosensor.

Set P



- 1) Write a short note on:
  - a) Working and construction of amperometric sensor.
  - b) Catalytic biosensor.
- 2) Explain how fiber optic sensors are designed for measuring following variables :
  - a) temperature
  - b) pressure
- 3) With the help of diagram explain working of ISFET's.

### Set Q

### S.E. (Part – II) (Biomedical Engg.) (Old CGPA) Examination, 2018 TRANSDUCER IN BIOMEDICAL INSTRUMENTATION

Day and Date : Tuesday, 15-5-2018 Max. Marks : 70

Time: 10.00 a.m. to 1.00 p.m.

Instructions: 1) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book Page No. 3. Each question carries one mark.

2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

|         |                                                              | MCQ/Objective      | Тур | e Questions                                             |           |
|---------|--------------------------------------------------------------|--------------------|-----|---------------------------------------------------------|-----------|
| Duratio | n : 30 Minutes                                               | •                  |     |                                                         | Marks: 14 |
| 1. Ch   | oose the correct ar                                          | nswer:             |     |                                                         | (14×1=14) |
| 1)      | a) Displacement c) Moisture                                  | ntities cannot be  | b)  | asured by capacitive transo<br>Speed<br>None of above   | lucers.   |
| 2)      | des different metals.  a) Peltier effect c) Seebeck effect   |                    | b)  | tween two junctions formed Thomson effect None of above | d by two  |
| 3)      | strain applied.                                              | tional             | b)  | e developed is<br>Inversely proportional<br>Independent | to        |
| 4)      | cell                                                         | ,                  |     | ght, the resistance of phot<br>Remains samed) Separa    |           |
| 5)      | a) Strain gauge c) LVDT                                      | resents active tra | b)  | ucer.<br>Thermister<br>Thermo couple                    |           |
| 6)      | Capacitive transdu<br>a) Static measure<br>c) Transient meas | ment               | ,   | Dynamic measurement<br>Both a) and b)                   | DIO       |

| 7)  | erro                | r is caused by care | eless handling.      |                      |
|-----|---------------------|---------------------|----------------------|----------------------|
|     | a) Systematic       | b) Gross            | c) Random            | d) Kinetic           |
| 8)  | is defi             | ned as the largest  | charge in the inpu   | ut quantity to which |
|     | the measuring sys   | stem does not resp  | ond.                 |                      |
|     | a) Drift            | b) Resolution       | c) Dead band         | d) Error             |
| 9)  | Capacitive transde  | ucers are also cal  | lled as              | transducers as       |
|     | they measure an o   | •                   | . •                  |                      |
|     | a) Proximity        | b) Invasive         | c) Loading           | d) Inductive         |
| 10) | Quartz is an        | , the surfa         | aces on which charg  | ge accumulates are   |
|     | provided with meta  |                     |                      |                      |
|     | a) Conductor        |                     | b) Insulator         |                      |
|     | , 1                 |                     | d) None of above     |                      |
| 11) |                     |                     | half cell is measure |                      |
|     | ,                   | •                   | c) Radii of ions     | , .                  |
| 12) |                     | sensors use the mo  | ovement of electror  | ns produced during   |
|     | redox reaction.     |                     | \ <b>D</b> :         | "                    |
|     | , .                 | •                   | cc) Piezoelectric    | d) Optical           |
| 13) | acts                | •                   |                      |                      |
|     |                     |                     | c) Transistor        |                      |
| 14) |                     | <del>-</del>        | in bourdon tubes.    |                      |
|     | a) Pressure to dis  | placement           | b) Pressure to vo    | ltage                |
|     | c) Pressure to stra | ain                 | d) Pressure to for   | rce                  |
|     |                     |                     |                      |                      |



| Seat |  |
|------|--|
| No.  |  |

### S.E. (Part – II) (Biomedical Engg.) (Old CGPA) Examination, 2018 TRANSDUCER IN BIOMEDICAL INSTRUMENTATION

Day and Date: Tuesday, 15-5-2018 Marks: 56

Time: 10.00 a.m. to 1.00 p.m.

#### SECTION - I

#### 2. Attempt any four questions :

 $(4 \times 4 = 16)$ 

- 1) Distinguish between: (a) passive and active transducer (b) static and dynamic characteristics.
- 2) Define the dynamic error of a first order system and derive the expression for the same when it is subjected to standard input signals.
- 3) Define gauge factor and distinguish between bonded and unbonded strain gauges.
- 4) With the help of diagram explain electrode electrolyte interface and define half cell potential.
- 5) Explain working of LVDT with the help of neat diagram.

#### 3. Attempt any two questions:

 $(6 \times 2 = 12)$ 

- 1) Define motion artifacts. Explain various types of body surface electrodes with their application.
- 2) Write a short note on: (a) types of diaphragms (b) types and material of belows (c) types of bourdon tubes.
- 3) Describe construction, working and application of microelectrodes.

#### SECTION - II

#### 4. Attempt any four questions:

- 1) Define pH and describe working of pH electrode.
- 2) Describe designing principles in fabrication of fiber optic sensors.
- 3) Explain physiology of acid base balance and blood gas analysis.
- 4) Explain significance of O<sub>2</sub> cell and mention its applications.
- 5) Describe transconduction phenomenon for biosensor.



- 1) Write a short note on:
  - a) Working and construction of amperometric sensor.
  - b) Catalytic biosensor.
- 2) Explain how fiber optic sensors are designed for measuring following variables :
  - a) temperature
  - b) pressure
- 3) With the help of diagram explain working of ISFET's.

| SL | .R- | TC | _ | 445 |
|----|-----|----|---|-----|
|----|-----|----|---|-----|



| Seat |  |
|------|--|
| No.  |  |

Set



## S.E. (Part – II) (Biomedical Engg.) (Old CGPA) Examination, 2018 TRANSDUCER IN BIOMEDICAL INSTRUMENTATION

Day and Date: Tuesday, 15-5-2018 Max. Marks: 70

Time: 10.00 a.m. to 1.00 p.m.

- Instructions: 1) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book Page No. 3. Each question carries one mark.
  - 2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

#### **MCQ/Objective Type Questions**

| Dura | tio | n : 30 Minutes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                   | 7 6 |                                                    |      | Mar           | ks : 14 |
|------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----|----------------------------------------------------|------|---------------|---------|
| 1. ( | Cho | oose the correct an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | swer:             |     |                                                    |      | (14           | ×1=14)  |
|      | 1)  | biose redox reaction.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ensors use the m  | ove | ment of electro                                    | ns p | produced duri | ing     |
|      |     | a) Amperometric                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | b) Potentiometric | cc) | Piezoelectric                                      | d)   | Optical       |         |
|      | 2)  | a) LED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |     |                                                    | d)   | All of above  |         |
|      | 3)  | a) Pressure to disp<br>c) Pressure to stra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | olacement         | b)  | Pressure to vo                                     | ltag | le            |         |
|      | 4)  | <ul> <li>quantities cannot be measured by capacitive transducers.</li> <li>Displacement</li> <li>Speed</li> <li>Moisture</li> <li>None of above</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |     | 6.                                                 |      |               |         |
|      | 5)  | description descri |                   | b)  | tween two junct<br>Thomson effect<br>None of above | ct   | s formed by t | wo      |
|      | 6)  | In piezoelectric strastrain applied.  a) Directly proportic) Equal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   | b)  | e developed is Inversely prop Independent          |      |               | to      |

| 7)  | With the increase cell | in the intensity of | f lig | ght, the resista | nce   | of photovoltaic  |
|-----|------------------------|---------------------|-------|------------------|-------|------------------|
|     | a) Increases           | b) Decreases        | c)    | Remains same     | e d)  | Separates        |
| 8)  | repr                   | esents active tran  | sdı   | icer.            |       |                  |
|     | a) Strain gauge        |                     | ,     | Thermister       |       |                  |
|     | c) LVDT                |                     | d)    | Thermo couple    | Э     |                  |
| 9)  | Capacitive transdu     | icer are used for   |       |                  |       |                  |
|     | a) Static measure      | ment                | b)    | Dynamic meas     | sure  | ement            |
|     | c) Transient meas      |                     | -     |                  |       |                  |
| 10) | erro                   | •                   |       | _                |       |                  |
|     | a) Systematic          | b) Gross            | c)    | Random           | d)    | Kinetic          |
| 11) | is defi                | _                   |       | -                | ut qu | uantity to which |
|     | the measuring sys      | •                   |       |                  |       | _                |
|     | a) Drift               | •                   |       |                  | -     |                  |
| 12) | Capacitive transdu     |                     |       |                  |       | transducers as   |
|     | they measure an o      | •                   |       |                  |       |                  |
|     | a) Proximity           | •                   | •     | _                | •     |                  |
| 13) | Quartz is an           |                     | ces   | on which char    | ge a  | ccumulates are   |
|     | provided with meta     | allic electrodes.   |       |                  |       |                  |
|     | a) Conductor           |                     | ,     | Insulator        |       |                  |
|     | c) Capacitor           |                     | ,     | None of above    |       |                  |
| 14) | Standard electrode     |                     |       |                  |       |                  |
|     | a) Voltage             | b) ions apart       | C)    | Radii of ions    | a)    | Deposited ion    |
|     |                        |                     |       |                  |       |                  |



| Seat |  |
|------|--|
| No.  |  |

### S.E. (Part – II) (Biomedical Engg.) (Old CGPA) Examination, 2018 TRANSDUCER IN BIOMEDICAL INSTRUMENTATION

Day and Date: Tuesday, 15-5-2018 Marks: 56

Time: 10.00 a.m. to 1.00 p.m.

#### SECTION - I

#### 2. Attempt any four questions:

 $(4 \times 4 = 16)$ 

- 1) Distinguish between: (a) passive and active transducer (b) static and dynamic characteristics.
- 2) Define the dynamic error of a first order system and derive the expression for the same when it is subjected to standard input signals.
- 3) Define gauge factor and distinguish between bonded and unbonded strain gauges.
- 4) With the help of diagram explain electrode electrolyte interface and define half cell potential.
- 5) Explain working of LVDT with the help of neat diagram.

#### 3. Attempt any two questions:

 $(6 \times 2 = 12)$ 

- 1) Define motion artifacts. Explain various types of body surface electrodes with their application.
- 2) Write a short note on: (a) types of diaphragms (b) types and material of belows (c) types of bourdon tubes.
- 3) Describe construction, working and application of microelectrodes.

#### SECTION - II

#### 4. Attempt any four questions :

 $(4 \times 4 = 16)$ 

- 1) Define pH and describe working of pH electrode.
- 2) Describe designing principles in fabrication of fiber optic sensors.
- 3) Explain physiology of acid base balance and blood gas analysis.
- 4) Explain significance of O<sub>2</sub> cell and mention its applications.
- 5) Describe transconduction phenomenon for biosensor.

Set R



- 1) Write a short note on:
  - a) Working and construction of amperometric sensor.
  - b) Catalytic biosensor.
- 2) Explain how fiber optic sensors are designed for measuring following variables :
  - a) temperature
  - b) pressure
- 3) With the help of diagram explain working of ISFET's.

|--|

| Seat |  |
|------|--|
| No.  |  |

Set

S

# S.E. (Part – II) (Biomedical Engg.) (Old CGPA) Examination, 2018 TRANSDUCER IN BIOMEDICAL INSTRUMENTATION

| -       | d Date : Tuesday, 1<br>10.00 a.m. to 1.00 լ              |                                                                              |                                                                                         | Max. Marks: 70                 |
|---------|----------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------|
| 1       | 30<br>Ca<br>2) <b>A</b><br><b>o</b>                      | <b>0 minutes</b> in Ans<br>arries <b>one</b> mark.<br><b>nswer MCQ/Obj</b> e | ulsory. It should b<br>wer Book Page No.<br>ective type question<br>to mention, Q.P. Se | 3. Each question on Page No. 3 |
|         |                                                          | MCQ/Objective T                                                              | ype Questions                                                                           |                                |
| Duratio | n : 30 Minutes                                           |                                                                              |                                                                                         | Marks: 14                      |
| 1. Ch   | oose the correct an                                      | swer:                                                                        |                                                                                         | (14×1=14)                      |
| 1)      | strain applied.                                          | ional                                                                        | tage developed is _ b) Inversely propor d) Independent                                  |                                |
| 2)      | , .                                                      | in the intensity of                                                          | of light, the resistance                                                                | ce of photovoltaic             |
|         | a) Increases                                             | b) Decreases                                                                 | c) Remains same of                                                                      | d) Separates                   |
| 3)      | a) Strain gauge c) LVDT                                  | esents active tran                                                           | sducer. b) Thermister d) Thermo couple                                                  |                                |
| 4)      | Capacitive transdua) Static measure c) Transient measure | ment                                                                         | b) Dynamic measud) Both a) and b)                                                       | rement                         |
| 5)      | error                                                    | is caused by care<br>b) Gross                                                | eless handling.<br>c) Random                                                            | d) Kinetic                     |
| 6)      | is define the measuring systa.) Drift                    | tem does not resp                                                            | t charge in the input<br>bond.<br>c) Dead band                                          |                                |

| 7)  | Capacitive transducers are also of they measure an object without me | called as transducers as echanical coupling.        |  |  |  |  |
|-----|----------------------------------------------------------------------|-----------------------------------------------------|--|--|--|--|
|     | a) Proximity b) Invasive                                             | ·                                                   |  |  |  |  |
| 8)  | Quartz is an, the su provided with metallic electrodes. a) Conductor | rfaces on which charge accumulates are b) Insulator |  |  |  |  |
|     | c) Capacitor                                                         | d) None of above                                    |  |  |  |  |
| 9)  | Standard electrode potential for ar                                  |                                                     |  |  |  |  |
|     | a) Voltage b) lons apart                                             | c) Radii of ions d) Deposited ion                   |  |  |  |  |
| 10) |                                                                      | movement of electrons produced during               |  |  |  |  |
|     | redox reaction.                                                      |                                                     |  |  |  |  |
|     | a) Amperometric b) Potentiome                                        | tricc) Piezoelectric d) Optical                     |  |  |  |  |
| 11) | acts as detector in o                                                | optical sensor.                                     |  |  |  |  |
|     | a) LED b) Photo diode                                                | e c) Transistor d) All of above                     |  |  |  |  |
| 12) | conversion take pla                                                  | ce in bourdon tubes.                                |  |  |  |  |
|     | a) Pressure to displacement                                          |                                                     |  |  |  |  |
|     | c) Pressure to strain                                                | d) Pressure to force                                |  |  |  |  |
| 13) | quantities cannot be                                                 | e measured by capacitive transducers.               |  |  |  |  |
|     | a) Displacement                                                      | b) Speed                                            |  |  |  |  |
|     | c) Moisture                                                          | d) None of above                                    |  |  |  |  |
| 14) | ) describes current flow between two junctions formed by two         |                                                     |  |  |  |  |
|     | different metals.                                                    |                                                     |  |  |  |  |
|     | a) Peltier effect                                                    | b) Thomson effect                                   |  |  |  |  |
|     | c) Seebeck effect                                                    | d) None of above                                    |  |  |  |  |



| Seat |  |
|------|--|
| No.  |  |

### S.E. (Part – II) (Biomedical Engg.) (Old CGPA) Examination, 2018 TRANSDUCER IN BIOMEDICAL INSTRUMENTATION

Day and Date: Tuesday, 15-5-2018 Marks: 56

Time: 10.00 a.m. to 1.00 p.m.

#### SECTION - I

#### 2. Attempt any four questions:

 $(4 \times 4 = 16)$ 

- 1) Distinguish between: (a) passive and active transducer (b) static and dynamic characteristics.
- 2) Define the dynamic error of a first order system and derive the expression for the same when it is subjected to standard input signals.
- 3) Define gauge factor and distinguish between bonded and unbonded strain gauges.
- 4) With the help of diagram explain electrode electrolyte interface and define half cell potential.
- 5) Explain working of LVDT with the help of neat diagram.

#### 3. Attempt any two questions:

 $(6 \times 2 = 12)$ 

- 1) Define motion artifacts. Explain various types of body surface electrodes with their application.
- 2) Write a short note on: (a) types of diaphragms (b) types and material of belows (c) types of bourdon tubes.
- 3) Describe construction, working and application of microelectrodes.

#### SECTION - II

#### 4. Attempt any four questions:

- 1) Define pH and describe working of pH electrode.
- 2) Describe designing principles in fabrication of fiber optic sensors.
- 3) Explain physiology of acid base balance and blood gas analysis.
- 4) Explain significance of O<sub>2</sub> cell and mention its applications.
- 5) Describe transconduction phenomenon for biosensor.

- 1) Write a short note on:
  - a) Working and construction of amperometric sensor.
  - b) Catalytic biosensor.
- 2) Explain how fiber optic sensors are designed for measuring following variables :
  - a) temperature
  - b) pressure
- 3) With the help of diagram explain working of ISFET's.

| Seat |  |
|------|--|
| No.  |  |

Set P

# S.E. (Biomedical Engineering) (Part – II) (Old CGPA) Examination, 2018 BIOMEDICAL PROSTHETIC AND ORTHOTICS

| BIOMEDICAL PROSTH                                                                                                                                                                                                                                                      | ETIC AND ORTHOTICS                   |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--|--|--|--|--|
| Day and Date : Thursday, 17-5-2018<br>Time : 10.00 a.m. to 1.00 p.m.                                                                                                                                                                                                   | Max. Marks : 70                      |  |  |  |  |  |
| Instructions: 1) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book on Page No. 3. Each question carries one mark.  2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page. |                                      |  |  |  |  |  |
| MCQ/Objective                                                                                                                                                                                                                                                          |                                      |  |  |  |  |  |
| Duration: 30 Minutes                                                                                                                                                                                                                                                   | Marks: 14                            |  |  |  |  |  |
| 1. Choose the correct answer:                                                                                                                                                                                                                                          | (14×1=14)                            |  |  |  |  |  |
| 1) of the following is not star                                                                                                                                                                                                                                        | ce phase of gait.                    |  |  |  |  |  |
| a) Preswing                                                                                                                                                                                                                                                            | b) Midswing                          |  |  |  |  |  |
| c) Loading response                                                                                                                                                                                                                                                    | d) Post swing                        |  |  |  |  |  |
| 2) Cadence is                                                                                                                                                                                                                                                          |                                      |  |  |  |  |  |
| a) Steps per gait cycle                                                                                                                                                                                                                                                | b) Steps per minute                  |  |  |  |  |  |
| c) Walking time                                                                                                                                                                                                                                                        | d) Stepping time                     |  |  |  |  |  |
| 3) The ratio of stress of strain is know                                                                                                                                                                                                                               | n as                                 |  |  |  |  |  |
| a) Modulus of elasticity                                                                                                                                                                                                                                               | b) Young's modulus                   |  |  |  |  |  |
| c) Both a and b                                                                                                                                                                                                                                                        | d) Hook's modulus                    |  |  |  |  |  |
| 4) The shoulder and hip joints are of _                                                                                                                                                                                                                                | type.                                |  |  |  |  |  |
| a) ball and socket                                                                                                                                                                                                                                                     | b) pivot                             |  |  |  |  |  |
| c) saddle                                                                                                                                                                                                                                                              | d) gliding                           |  |  |  |  |  |
| 5) In a lever, the resistance i the effort.                                                                                                                                                                                                                            | s positioned between the fulcrum and |  |  |  |  |  |
| a) first class b) second class                                                                                                                                                                                                                                         | c) third class d) fourth class       |  |  |  |  |  |

| 6)  |                                            | joints are capable only of side to side and bode and forth movement with only slightly rotation. |                                |       |                   |      |                  |
|-----|--------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------|-------|-------------------|------|------------------|
|     | a)                                         | Hinge                                                                                            | b) Gliding                     | c)    | Pivot             | d)   | Condyloid        |
| 7)  | Following are basic types of stress except |                                                                                                  |                                |       |                   |      |                  |
|     | a)                                         | tensile stress                                                                                   | b) compressive                 | c)    | shear             | d)   | volumetric       |
| 8)  |                                            | movemovement of a boo                                                                            | ent is measured by<br>dy part. | go go | niometry is the u | ipwa | ard or backward  |
|     | a)                                         | Planter flexion                                                                                  | b) Adduction                   | c)    | Abduction         | d)   | Dorsiflexion     |
| 9)  | Th                                         | e degree to which                                                                                | ch ajoint is able to           | mc    | ve is referred a  | s    |                  |
|     | a)                                         | posture                                                                                          |                                | b)    | range of motion   | n    |                  |
|     | c)                                         | gait                                                                                             |                                | d)    | muscle strengt    | h    |                  |
| 10) | Un                                         | it of strain is                                                                                  |                                |       |                   |      |                  |
|     | a)                                         | Newton                                                                                           | b) Kg                          | c)    | Nm                | d)   | Unit less        |
| 11) | A                                          | clot formation in                                                                                | blood vessels is a             | lso   | called            |      |                  |
|     | a)                                         | Diffusion                                                                                        |                                | b)    | Drift             |      |                  |
|     | c)                                         | Coagulation                                                                                      |                                | d)    | Hydrolysis        |      |                  |
| 12) | Dυ                                         | ıring gait muscle                                                                                | s usee                         | ne    | gy.               |      |                  |
|     | a)                                         | minimum                                                                                          | b) maximum                     | c)    | stored            | d)   | kinetic          |
| 13) | A                                          | cord or strap of o                                                                               | dense tissue that o            | on    | nects a muscle    | to b | oone is called a |
|     | a)                                         | tendon                                                                                           | b) ligament                    | c)    | bursa             | d)   | arthritis        |
| 14) | Pro                                        | otective layer tha                                                                               | at covers dermis is            | s kr  | own as            |      |                  |
|     | a)                                         | epidermis                                                                                        | b) epithelial                  | c)    | muscle            | d)   | nerve            |
|     |                                            |                                                                                                  |                                |       |                   |      |                  |



| Seat |  |
|------|--|
| No.  |  |

### S.E. (Biomedical Engineering) (Part – II) (Old CGPA) Examination, 2018 BIOMEDICAL PROSTHETIC AND ORTHOTICS

Day and Date: Thursday, 17-5-2018 Marks: 56

Time: 10.00 a.m. to 1.00 p.m.

#### SECTION - I

#### 2. Attempt any four questions:

 $(4 \times 4 = 16)$ 

- 1) Draw and explain various parameters of stress, strain curve of biological tissues.
- 2) Define and explain the concept of gait cycle and mention its applications for analysis.
- 3) With the help of diagram explain biomechanics of skin.
- 4) Explain biomechanics of bone and mention its significance.
- 5) Define various types of forces and explain their analysis in the joints.

#### 3. Attempt any two questions:

 $(6 \times 2 = 12)$ 

- 1) Explain complete gait cycle and draw the graphs for various joint angles.
- 2) Write a short notes on:
  - a) Biomechanics of tendons and ligaments.
  - b) Synovial joints classification.
- 3) With the help of diagram explain working of goniometer and foot switches.

#### SECTION - II

#### 4. Attempt any 4 questions:

- 1) Describe recent development in prosthesis and orthotics.
- 2) Describe construction and application of Jaipur foots.
- 3) Describe construction and applications of SACH foot.



- 4) Define AFO and explain it the with help of any one example in detail.
- 5) Define spinal orthosis and describe criteria for providing spinal orthosis.
- 5. Attempt any 2 questions:

- 1) Explain three point pressure principle with three examples.
- 2) List the various abnormal spinal curvatures and describe any one spinal orthosis.
- 3) Explain the PTB socket lamination procedure with necessary diagram in detail.

| Seat |  |
|------|--|
| No.  |  |

### S.F. (Biomedical Engineering) (Part – II) (Old CGPA) Examination, 2018.

| -                                                                                     | EDICAL PROST                                       | , ,                                           | PRTHOTICS                                                                    | 1, 2010                 |
|---------------------------------------------------------------------------------------|----------------------------------------------------|-----------------------------------------------|------------------------------------------------------------------------------|-------------------------|
| Day and Date: Thursd<br>Time: 10.00 a.m. to 1.                                        | •                                                  |                                               | Max. N                                                                       | Marks : 70              |
|                                                                                       | minutes in Ansi<br>carries one man<br>Answer MCQ/C | ver Book on Pa<br>k.<br><b>Dbjective type</b> | ould be solved in finge No. 3. Each que questions on Pagen, Q.P. Set (P/Q/R/ | estion<br><b>e No</b> . |
| Duration: 30 Minutes                                                                  | MCQ/Objectiv                                       | e Type Questio                                |                                                                              | Marks : 14              |
|                                                                                       |                                                    |                                               |                                                                              |                         |
| 1. Choose the correct                                                                 | t answer :                                         |                                               | (                                                                            | (14×1=14)               |
| movement is measured by goniometry is the upward or backward movement of a body part. |                                                    |                                               |                                                                              |                         |
| a) Planter flexi                                                                      | ion b) Adduction                                   | c) Abduction                                  | on d) Dorsiflex                                                              | ion                     |
| 2) The degree to                                                                      | which ajoint is able                               | e to move is refe                             | erred as                                                                     |                         |
| a) posture                                                                            |                                                    | b) range of                                   | motion                                                                       |                         |
| c) gait                                                                               |                                                    | d) muscle :                                   | strength                                                                     |                         |
| 3) Unit of strain is                                                                  | <b>;</b>                                           |                                               |                                                                              |                         |
| a) Newton                                                                             | b) Kg                                              | c) Nm                                         | d) Unit less                                                                 |                         |
| 4) A clot formation                                                                   | n in blood vessels                                 | is also called                                |                                                                              |                         |
| a) Diffusion                                                                          |                                                    | b) Drift                                      |                                                                              |                         |
| c) Coagulation                                                                        | 1                                                  | d) Hydrolys                                   | sis                                                                          |                         |
| 5) During gait mu                                                                     | scles use                                          | energy                                        |                                                                              |                         |

a) minimum b) maximum c) stored

d) kinetic

| 6)  | A cord or strap of dense tissue that connects a muscle to bone is called a |                                 |      |                   |      |                |  |
|-----|----------------------------------------------------------------------------|---------------------------------|------|-------------------|------|----------------|--|
|     | a) tendon                                                                  | b) ligament                     | c)   | bursa             | d)   | arthritis      |  |
| 7)  | Protective layer that covers dermis is known as                            |                                 |      |                   |      |                |  |
|     | a) epidermis                                                               | b) epithelial                   | c)   | muscle            | d)   | nerve          |  |
| 8)  | of the foll                                                                | lowing is not stand             | ер   | hase of gait.     |      |                |  |
|     | a) Preswing                                                                |                                 | b)   | Midswing          |      |                |  |
|     | c) Loading respon                                                          | ise                             | d)   | Post swing        |      |                |  |
| 9)  | Cadence is                                                                 |                                 |      |                   |      |                |  |
|     | a) Steps per gait of                                                       | cycle                           | b)   | Steps per minu    | ite  |                |  |
|     | c) Walking time                                                            |                                 | d)   | Stepping time     |      |                |  |
| 10) | The ratio of stress                                                        | of strain is known              | as   |                   |      |                |  |
|     | a) Modulus of elas                                                         | sticity                         | b)   | Young's modul     | us   |                |  |
|     | c) Both a and b                                                            |                                 |      | d) Hook's modulus |      |                |  |
| 11) | The shoulder and                                                           | hip joints are of               |      | type.             |      |                |  |
|     | a) ball and socket                                                         |                                 | b)   | pivot             |      |                |  |
|     | c) saddle                                                                  |                                 | d)   | gliding           |      |                |  |
| 12) | In a lever the effort.                                                     | r, the resistance is            | ро   | sitioned betwee   | n th | ne fulcrum and |  |
|     | a) first class                                                             | b) second class                 | c)   | third class       | d)   | fourth class   |  |
| 13) | joints are c                                                               | apable only of side<br>otation. | e to | side and bode a   | nd   | forth movement |  |
|     | a) Hinge                                                                   | b) Gliding                      | c)   | Pivot             | d)   | Condyloid      |  |
| 14) | Following are basi                                                         | c types of stress e             | XCE  | ept               |      |                |  |
|     | a) tensile stress                                                          | b) compressive                  | c)   | shear             | d)   | volumetric     |  |



| Seat |  |
|------|--|
| No.  |  |

### S.E. (Biomedical Engineering) (Part – II) (Old CGPA) Examination, 2018 BIOMEDICAL PROSTHETIC AND ORTHOTICS

Day and Date: Thursday, 17-5-2018 Marks: 56

Time: 10.00 a.m. to 1.00 p.m.

#### SECTION - I

#### 2. Attempt any four questions:

 $(4 \times 4 = 16)$ 

- 1) Draw and explain various parameters of stress, strain curve of biological tissues.
- 2) Define and explain the concept of gait cycle and mention its applications for analysis.
- 3) With the help of diagram explain biomechanics of skin.
- 4) Explain biomechanics of bone and mention its significance.
- 5) Define various types of forces and explain their analysis in the joints.

#### 3. Attempt any two questions:

 $(6 \times 2 = 12)$ 

- 1) Explain complete gait cycle and draw the graphs for various joint angles.
- 2) Write a short notes on :
  - a) Biomechanics of tendons and ligaments.
  - b) Synovial joints classification.
- 3) With the help of diagram explain working of goniometer and foot switches.

#### SECTION - II

#### 4. Attempt any 4 questions:

- 1) Describe recent development in prosthesis and orthotics.
- 2) Describe construction and application of Jaipur foots.
- 3) Describe construction and applications of SACH foot.



- 4) Define AFO and explain it the with help of any one example in detail.
- 5) Define spinal orthosis and describe criteria for providing spinal orthosis.
- 5. Attempt any 2 questions:

- 1) Explain three point pressure principle with three examples.
- 2) List the various abnormal spinal curvatures and describe any one spinal orthosis.
- 3) Explain the PTB socket lamination procedure with necessary diagram in detail.

| Seat |  |
|------|--|
| No.  |  |

Set R

# S.E. (Biomedical Engineering) (Part – II) (Old CGPA) Examination, 2018 BIOMEDICAL PROSTHETIC AND ORTHOTICS

| Day and Date: Thursday, 17-5-2018 | Max. Marks: 70 |
|-----------------------------------|----------------|
| Time: 10.00 a.m. to 1.00 p.m.     |                |

- Instructions: 1) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book on Page No. 3. Each question carries one mark.
  - 2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

|         | ı                      | MCQ/Objective T      | γpe  | e Questions       |      |                 |
|---------|------------------------|----------------------|------|-------------------|------|-----------------|
| Duratio | on : 30 Minutes        |                      | , ,  |                   |      | Marks: 14       |
| 1. Ch   | oose the correct an    | swer:                |      |                   |      | (14×1=14)       |
| 1)      | In a lever the effort. | the resistance is    | ро   | sitioned betwee   | n th | ne fulcrum and  |
|         | a) first class         | b) second class      | c)   | third class       | d)   | fourth class    |
| 2)      | joints are c           | •                    | e to | side and bode a   | nd   | forth movement  |
|         | a) Hinge               | b) Gliding           | c)   | Pivot             | d)   | Condyloid       |
| 3)      | Following are basic    | c types of stress e  | XCE  | ept               |      |                 |
|         | a) tensile stress      | b) compressive       | c)   | shear             | d)   | volumetric      |
| 4)      | movem                  |                      | go,  | niometry is the u | pw:  | ard or backward |
|         | a) Planter flexion     | b) Adduction         | c)   | Abduction         | d)   | Dorsiflexion    |
| 5)      | The degree to which    | ch ajoint is able to | mc   | ove is referred a | S    |                 |
|         | a) posture             |                      | b)   | range of motion   | า    |                 |
|         | c) gait                |                      | d)   | muscle strengt    | h    |                 |

| 6)  | Unit of strain is     |                     |      |                |      |                 |
|-----|-----------------------|---------------------|------|----------------|------|-----------------|
|     | a) Newton             | b) Kg               | c)   | Nm             | d)   | Unit less       |
| 7)  | A clot formation in   | blood vessels is a  | lso  | called         |      |                 |
|     | a) Diffusion          |                     | b)   | Drift          |      |                 |
|     | c) Coagulation        |                     | d)   | Hydrolysis     |      |                 |
| 8)  | During gait muscle    | es usee             | ne   | rgy.           |      |                 |
|     | a) minimum            | b) maximum          | c)   | stored         | d)   | kinetic         |
| 9)  | A cord or strap of o  | dense tissue that o | con  | nects a muscle | to b | one is called a |
|     | a) tendon             | b) ligament         | c)   | bursa          | d)   | arthritis       |
| 10) | Protective layer that | at covers dermis is | s kr | nown as        |      |                 |
|     | a) epidermis          | b) epithelial       | c)   | muscle         | d)   | nerve           |
| 11) | of the foll           | owing is not stand  | e p  | hase of gait.  |      |                 |
|     | a) Preswing           |                     | b)   | Midswing       |      |                 |
|     | c) Loading respon     | ise                 | d)   | Post swing     |      |                 |
| 12) | Cadence is            |                     |      |                |      |                 |
|     | a) Steps per gait of  | cycle               | b)   | Steps per minu | ıte  |                 |
|     | c) Walking time       |                     | d)   | Stepping time  |      |                 |
| 13) | The ratio of stress   | of strain is known  | as   |                |      |                 |
|     | a) Modulus of elas    | sticity             | b)   | Young's modul  | us   |                 |
|     | c) Both a and b       |                     | d)   | Hook's modulu  | S    |                 |
| 14) | The shoulder and      | hip joints are of   |      | type.          |      |                 |
|     | a) ball and socket    |                     | b)   | pivot          |      |                 |
|     | c) saddle             |                     | d)   | gliding        |      |                 |
|     |                       |                     |      |                |      |                 |



| Seat |  |
|------|--|
| No.  |  |

# S.E. (Biomedical Engineering) (Part – II) (Old CGPA) Examination, 2018 BIOMEDICAL PROSTHETIC AND ORTHOTICSS

Day and Date: Thursday, 17-5-2018 Marks: 56

Time: 10.00 a.m. to 1.00 p.m.

#### SECTION - I

### 2. Attempt any four questions:

 $(4 \times 4 = 16)$ 

- Draw and explain various parameters of stress, strain curve of biological tissues.
- 2) Define and explain the concept of gait cycle and mention its applications for analysis.
- 3) With the help of diagram explain biomechanics of skin.
- 4) Explain biomechanics of bone and mention its significance.
- 5) Define various types of forces and explain their analysis in the joints.

### 3. Attempt any two questions:

 $(6 \times 2 = 12)$ 

- 1) Explain complete gait cycle and draw the graphs for various joint angles.
- 2) Write a short notes on :
  - a) Biomechanics of tendons and ligaments.
  - b) Synovial joints classification.
- 3) With the help of diagram explain working of goniometer and foot switches.

#### SECTION - II

### 4. Attempt any 4 questions:

 $(4 \times 4 = 16)$ 

- 1) Describe recent development in prosthesis and orthotics.
- 2) Describe construction and application of Jaipur foots.
- 3) Describe construction and applications of SACH foot.



- 4) Define AFO and explain it the with help of any one example in detail.
- 5) Define spinal orthosis and describe criteria for providing spinal orthosis.
- 5. Attempt any 2 questions:

- 1) Explain three point pressure principle with three examples.
- 2) List the various abnormal spinal curvatures and describe any one spinal orthosis.
- 3) Explain the PTB socket lamination procedure with necessary diagram in detail.

| Seat |  |
|------|--|
| No.  |  |

Set S

# S.E. (Biomedical Engineering) (Part – II) (Old CGPA) Examination, 2018 BIOMEDICAL PROSTHETIC AND ORTHOTICS

|          | 21011121                                |                                                                             |                                       | 101100                                                                              |
|----------|-----------------------------------------|-----------------------------------------------------------------------------|---------------------------------------|-------------------------------------------------------------------------------------|
| •        | d Date : Thursday<br>10.00 a.m. to 1.00 |                                                                             |                                       | Max. Marks: 70                                                                      |
|          | 2)                                      | <b>minutes</b> in Answe<br>carries <b>one</b> mark.<br><b>Answer MCQ/Ob</b> | er Book on Page i<br>jective type que | be solved in first 30 No. 3. Each question stions on Page No. D.P. Set (P/Q/R/S) on |
| <b>.</b> | 00 M                                    | MCQ/Objective                                                               | Type Questions                        |                                                                                     |
| Duratio  | on: 30 Minutes                          |                                                                             |                                       | Marks: 14                                                                           |
| 1. Ch    | oose the correct a                      | nswer:                                                                      |                                       | (14×1=14)                                                                           |
| 1)       | Unit of strain is a) Newton             | b) Kg                                                                       | c) Nm                                 | d) Unit less                                                                        |
| 2)       | A clot formation in                     | n blood vessels is                                                          | also called                           |                                                                                     |
| _,       | a) Diffusion                            |                                                                             | b) Drift                              |                                                                                     |
|          | c) Coagulation                          |                                                                             | d) Hydrolysis                         |                                                                                     |
| 3)       | During gait musc                        | les use                                                                     | energy.                               |                                                                                     |
| ,        | a) minimum                              |                                                                             | c) stored                             | d) kinetic                                                                          |
| 4)       | A cord or strap of                      | dense tissue that                                                           | connects a musc                       | ele to bone is called a                                                             |
|          | a) tendon                               | b) ligament                                                                 | c) bursa                              | d) arthritis                                                                        |
| 5)       | Protective layer t                      | hat covers dermis                                                           | is known as                           |                                                                                     |
|          | a) epidermis                            | b) epithelial                                                               | c) muscle                             | d) nerve                                                                            |
| 6)       | of the fo                               | ollowing is not star                                                        | nce phase of gait.                    |                                                                                     |
|          | a) Preswing                             |                                                                             | b) Midswing                           |                                                                                     |
|          | c) Loading respo                        | onse                                                                        | d) Post swing                         |                                                                                     |
|          |                                         |                                                                             |                                       |                                                                                     |

| 7)  | Cadence is             |                      |      |                    |      |                 |
|-----|------------------------|----------------------|------|--------------------|------|-----------------|
|     | a) Steps per gait of   | cycle                | b)   | Steps per minu     | ute  |                 |
|     | c) Walking time        |                      | d)   | Stepping time      |      |                 |
| 8)  | The ratio of stress    | of strain is known   | as   |                    |      |                 |
|     | a) Modulus of elas     | sticity              | b)   | b) Young's modulus |      |                 |
|     | c) Both a and b        |                      | d)   | Hook's modulu      | IS   |                 |
| 9)  | The shoulder and I     | hip joints are of    |      | type.              |      |                 |
|     | a) ball and socket     |                      | b)   | pivot              |      |                 |
|     | c) saddle              |                      | d)   | gliding            |      |                 |
| 10) | In a lever the effort. | r, the resistance is | ро   | sitioned betwee    | n th | ne fulcrum and  |
|     | a) first class         | b) second class      | c)   | third class        | d)   | fourth class    |
| 11) | joints are c           |                      | e to | side and bode a    | ınd  | forth movement  |
|     | a) Hinge               | b) Gliding           | c)   | Pivot              | d)   | Condyloid       |
| 12) | Following are basic    | c types of stress e  | XCE  | ept                |      |                 |
|     | a) tensile stress      |                      |      |                    | d)   | volumetric      |
| 13) | movem                  |                      | / gc | niometry is the u  | ıpw  | ard or backward |
|     | a) Planter flexion     | b) Adduction         | c)   | Abduction          | d)   | Dorsiflexion    |
| 14) | The degree to which    | ch ajoint is able to | mo   | ove is referred a  | ıs   |                 |
|     | a) posture             |                      | b)   | range of motion    | n    |                 |
|     | c) gait                |                      | d)   | muscle strengt     | h    |                 |
|     |                        |                      |      |                    |      |                 |



| Seat |  |
|------|--|
| No.  |  |

# S.E. (Biomedical Engineering) (Part – II) (Old CGPA) Examination, 2018 BIOMEDICAL PROSTHETIC AND ORTHOTICS

Day and Date: Thursday, 17-5-2018 Marks: 56

Time: 10.00 a.m. to 1.00 p.m.

#### SECTION - I

### 2. Attempt any four questions:

 $(4 \times 4 = 16)$ 

- 1) Draw and explain various parameters of stress, strain curve of biological tissues.
- 2) Define and explain the concept of gait cycle and mention its applications for analysis.
- 3) With the help of diagram explain biomechanics of skin.
- 4) Explain biomechanics of bone and mention its significance.
- 5) Define various types of forces and explain their analysis in the joints.

### 3. Attempt any two questions:

 $(6 \times 2 = 12)$ 

- 1) Explain complete gait cycle and draw the graphs for various joint angles.
- 2) Write a short notes on :
  - a) Biomechanics of tendons and ligaments.
  - b) Synovial joints classification.
- 3) With the help of diagram explain working of goniometer and foot switches.

#### SECTION - II

### 4. Attempt any 4 questions:

 $(4 \times 4 = 16)$ 

- 1) Describe recent development in prosthesis and orthotics.
- 2) Describe construction and application of Jaipur foots.
- 3) Describe construction and applications of SACH foot.



- 4) Define AFO and explain it the with help of any one example in detail.
- 5) Define spinal orthosis and describe criteria for providing spinal orthosis.
- 5. Attempt any 2 questions:

- 1) Explain three point pressure principle with three examples.
- 2) List the various abnormal spinal curvatures and describe any one spinal orthosis.
- 3) Explain the PTB socket lamination procedure with necessary diagram in detail.

| Seat |  |
|------|--|
| No.  |  |

Set P

# S.E. (Biomedical Engg.) (Part – II) Examination, 2018 (CGPA) ELECTRONIC INSTRUMENTATION (Old)

Day and Date : Saturday, 19-5-2018 Max. Marks : 70

Time: 10.00 a.m. to 1.00 p.m.

- Instructions: 1) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book Page No. 3. Each question carries one mark.
  - 2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

### **MCQ/Objective Type Questions**

| Duration: 30 M        | nutes              |                    |                           |               | Marks: 14 |
|-----------------------|--------------------|--------------------|---------------------------|---------------|-----------|
| 1. Choose the         | correct answer     | :                  |                           |               | (1×14=14) |
|                       | errors a           |                    | measuring ins             | trument beca  | luse of   |
| A) Instru<br>C) Rande |                    |                    | B) Environmer<br>D) Human | ntal          |           |
| voltmete              |                    |                    |                           |               | ı r.m.s.  |
| -                     | olex B) neter is a |                    |                           |               |           |
| •                     | in measuring de    |                    |                           |               | ty is     |
| A) Voltag             | ge B)              | Resistance         | C) Impedance              | D) Either A)  | or B)     |
| 5)                    | Axis modu          | ulation is also ca | alled as intensi          | ty modulation |           |
| A) 2D                 | B)                 | X                  | C) Y                      | D) Z          |           |
| 6) Multimet           | er consumes        |                    | 1 watt o                  | f power.      |           |
| A) < Anc              | I = B)             | More than          | C) <                      | D) > & =      |           |

| 7)  | In magnetic type of re                                         | corder, data is re   | placed for         |       | times.                 |
|-----|----------------------------------------------------------------|----------------------|--------------------|-------|------------------------|
|     | A) ∞                                                           | B) Triple            | C) Multiple        | D)    | Dual                   |
| 8)  | A conve                                                        | rts physical and b   | iological quantity | y int | o electrical quantity. |
|     | A) Sensor                                                      | B) Transducer        | C) Biosensor       | D)    | None of above          |
| 9)  | A Piezoelectric force connected to charge is 50 mV/N. The gain | amplifier and ove    | rall gain of trans | duc   |                        |
|     | A) 1 mV/PC                                                     | B) 1.5 mV/PC         | C) 2.5 mV/PC       | D)    | 4 mV/PC                |
| 10) | me                                                             | tal is used to mea   | sure temperatur    | e.    |                        |
|     | A) Aluminum                                                    |                      | B) Platinum        |       |                        |
|     | C) Stainless steel                                             |                      | D) Copper          |       |                        |
| 11) | i                                                              | s the ratio of the c | hange in output    | to c  | change in the          |
|     | input.                                                         |                      |                    |       |                        |
|     | A) Error                                                       | B) Resolution        | C) Accuracy        | D)    | Sensitivity            |
| 12) | Common anode type                                              | display requires a   | an active          |       | configuration          |
|     | for code conversion.                                           | D) IP-I              | O) Nie 1 eel       | Β,    | NATIONAL STATE         |
|     | A) Low                                                         | B) High              | •                  | •     | _                      |
| 13) | In CRO, which of the                                           | following is not a   | -                  | gun   | ?                      |
|     | A) Cathode                                                     |                      | B) Grid            |       |                        |
|     | C) Accelerating Anod                                           |                      |                    |       |                        |
| 14) | Ink jet recorder gives                                         |                      | •                  |       |                        |
|     | A) 1000                                                        | B) 10                | C) 500             | D)    | 2000                   |
|     |                                                                |                      |                    |       |                        |



| Seat |  |
|------|--|
| No.  |  |

# S.E. (Biomedical Engg.) (Part – II) Examination, 2018 (CGPA)

### **ELECTRONIC INSTRUMENTATION (Old)**

Day and Date: Saturday, 19-5-2018 Marks: 56

Time: 10.00 a.m. to 1.00 p.m.

#### SECTION - I

### 2. Attempt any four:

 $(4 \times 4 = 16)$ 

- 1) Explain each block of generalized measurement system in detail.
- 2) Compare between analog and digital phase meter.
- 3) Explain advantages over conventional type Analog Voltmeter.
- 4) What is dead time element? Explain in detail.
- 5) Define sensitivity of electronic voltmeter. Write a short note on FET voltmeter.

### 3. Attempt any two:

- 1) Explain first order system response of a system to step, ramp and impulse input and frequency response.
- 2) Explain principle working of ramp type, dual slope type and successive approximation type digital voltmeter.
- 3) Explain factor involved in selection of voltmeter.

### SECTION - II

### 4. Attempt any four:

 $(4 \times 4 = 16)$ 

- 1) Explain intensity modulation and velocity modulation of CRO.
- 2) Explain working of function generator with the help of block diagram.
- 3) Explain principle working of ramp type digital voltmeter.
- 4) Explain following term with respect to CRO:
  - a) Focus
  - b) ALT/CHOP.
- 5) Explain the concept and working of non fade display system.

### 5. Attempt any two:

- 1) Draw and explain block diagram of multi channel DAS system.
- 2) Explain design and working of magnetic, laser and ink jet type of writing system.
- 3) What is Lissajous pattern? Explain how it can be used for measurement of frequency and phase using suitable diagram.

| <br> | <br> |  |
|------|------|--|

| Seat |  |
|------|--|
| No.  |  |

et Q

# S.E. (Biomedical Engg.) (Part – II) Examination, 2018 (CGPA) ELECTRONIC INSTRUMENTATION (Old)

Day and Date: Saturday, 19-5-2018 Max. Marks: 70

Time: 10.00 a.m. to 1.00 p.m.

- Instructions: 1) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book Page No. 3. Each question carries one mark.
  - 2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

## **MCQ/Objective Type Questions**

| Duration: 30 Minute         | es                                                                                 | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |                | Marks: 14 |
|-----------------------------|------------------------------------------------------------------------------------|-----------------------------------------|----------------|-----------|
| 1. Choose the cor           | rect answer :                                                                      |                                         |                | (1×14=14) |
| 1) A<br>A) Sensor           | _ converts physical and B) Transducer                                              | = -                                     | -              | -         |
| connected to                | ric force transducer has<br>charge amplifier and ov<br>The gain of the amplifier i | erall gain of tran                      | sducer and a   |           |
| A) 1 mV/PC                  | B) 1.5 mV/PC                                                                       | C) 2.5 mV/PC                            | D) 4 mV/P      | C         |
| 3)                          | metal is used to me                                                                | asure temperati                         | ıre.           |           |
| A) Aluminum                 | 1                                                                                  | B) Platinum                             |                |           |
| C) Stainless                | steel                                                                              | D) Copper                               |                |           |
| 4)<br>input.                | is the ratio of the                                                                | change in outpu                         | ıt to change i | n the     |
| A) Error                    | B) Resolution                                                                      | C) Accuracy                             | D) Sensiti     | vity      |
| 5) Common and for code conv | ode type display requires<br>version.                                              | an active                               | confi          | guration  |
| A) Low                      | B) High                                                                            | C) Neutral                              | D) Multi dig   | git       |

|     | In CRO, which of the                                                                     | <del>-</del>        | =                 | gun ?                |
|-----|------------------------------------------------------------------------------------------|---------------------|-------------------|----------------------|
|     | A) Cathode                                                                               |                     | B) Grid           |                      |
|     | <ul><li>A) Cathode</li><li>C) Accelerating Anod</li><li>Ink jet recorder gives</li></ul> | е                   | D) X-Y plates     |                      |
| 7)  | Ink jet recorder gives                                                                   | frequency respon    | se up to          | Hz.                  |
|     | A) 1000                                                                                  | B) 10               | C) 500            | D) 2000              |
| 8)  | erro                                                                                     | rs are inherent in  | measuring inst    | trument because of   |
|     | their mechanical struc                                                                   | cture.              |                   |                      |
|     | A) Instrumental                                                                          |                     | B) Environmen     | tal                  |
|     | C) Random                                                                                |                     | D) Human          |                      |
| 9)  | wavefo                                                                                   | orms are most wid   | ely accurately m  | neasured with r.m.s. |
|     | voltmeter.                                                                               |                     |                   |                      |
|     | A) Complex                                                                               | B) Continuous       | C) Dual           | D) Single            |
| 10) | A multimeter is a                                                                        |                     |                   |                      |
|     | A) PMMC                                                                                  | B) Digital          | C) Electronic     | D) Phase             |
| 11) | In a strain measuring                                                                    | device using a st   | rain gauge, the   | output quantity is   |
|     | A) Voltage                                                                               | B) Resistance       | C) Impedance      | D) Either A) or B)   |
| 12) | Axis m                                                                                   | odulation is also d | alled as intensit | y modulation.        |
|     | A) 2D                                                                                    |                     | C) Y              |                      |
| 13) | Multimeter consumes                                                                      | i                   | 1 watt of         | f power.             |
|     | A) $<$ And $=$                                                                           |                     |                   |                      |
| 14) | In magnetic type of re                                                                   | corder, data is re  | placed for        | times.               |
|     | A) ∞                                                                                     | B) Triple           | C) Multiple       | D) Dual              |



| Seat |  |
|------|--|
| No.  |  |

# S.E. (Biomedical Engg.) (Part – II) Examination, 2018 (CGPA)

### **ELECTRONIC INSTRUMENTATION (Old)**

Day and Date: Saturday, 19-5-2018 Marks: 56

Time: 10.00 a.m. to 1.00 p.m.

#### SECTION - I

### 2. Attempt any four:

 $(4 \times 4 = 16)$ 

- 1) Explain each block of generalized measurement system in detail.
- 2) Compare between analog and digital phase meter.
- 3) Explain advantages over conventional type Analog Voltmeter.
- 4) What is dead time element? Explain in detail.
- 5) Define sensitivity of electronic voltmeter. Write a short note on FET voltmeter.

### 3. Attempt any two:

- 1) Explain first order system response of a system to step, ramp and impulse input and frequency response.
- 2) Explain principle working of ramp type, dual slope type and successive approximation type digital voltmeter.
- 3) Explain factor involved in selection of voltmeter.

### SECTION - II

### 4. Attempt any four:

 $(4 \times 4 = 16)$ 

- 1) Explain intensity modulation and velocity modulation of CRO.
- 2) Explain working of function generator with the help of block diagram.
- 3) Explain principle working of ramp type digital voltmeter.
- 4) Explain following term with respect to CRO:
  - a) Focus
  - b) ALT/CHOP.
- 5) Explain the concept and working of non fade display system.

### 5. Attempt any two:

- 1) Draw and explain block diagram of multi channel DAS system.
- 2) Explain design and working of magnetic, laser and ink jet type of writing system.
- 3) What is Lissajous pattern? Explain how it can be used for measurement of frequency and phase using suitable diagram.

| Seat |  |
|------|--|
| No.  |  |

Set F

# S.E. (Biomedical Engg.) (Part – II) Examination, 2018 (CGPA) ELECTRONIC INSTRUMENTATION (Old)

| Day and Date: Saturday, 19-5-2018 | Max. Marks: 70  |
|-----------------------------------|-----------------|
| Day and Date: Galdrady, 13 3 2010 | Max. Marks . 70 |

Time: 10.00 a.m. to 1.00 p.m.

- Instructions: 1) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book Page No. 3. Each question carries one mark.
  - 2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

## **MCQ/Objective Type Questions**

| Duration: 30 Minutes    |                         |                    | Marks: 14                     |
|-------------------------|-------------------------|--------------------|-------------------------------|
| 1. Choose the correct a | ınswer :                |                    | (1×14=14)                     |
| 1) Axi                  | s modulation is also    | called as intens   | ity modulation.               |
| A) 2D                   | B) X                    | C) Y               | D) Z                          |
| 2) Multimeter consur    | nes                     | 1 watt             | of power.                     |
| A) $<$ And $=$          | B) More than            | C) <               | D) > & =                      |
| 3) In magnetic type of  | of recorder, data is re | eplaced for        | times.                        |
| A) ∞                    | B) Triple               | C) Multiple        | D) Dual                       |
| 4) A co                 | nverts physical and     | biological quant   | ity into electrical quantity. |
| A) Sensor               | B) Transducer           | C) Biosensor       | D) None of above              |
| 5) A Piezoelectric fo   | rce transducer has      | a charge sensiti   | vity of 20 PC/N. It is        |
| connected to char       | ge amplifier and over   | erall gain of tran | sducer and amplifier          |
| is 50 mV/N. The g       | ain of the amplifier is | s                  |                               |
| A) 1 mV/PC              | B) 1.5 mV/PC            | C) 2.5 mV/PC       | D) 4 mV/PC                    |
| 6)                      | metal is used to me     | asure temperati    | ıre.                          |
| A) Aluminum             |                         | B) Platinum        |                               |
| C) Stainless steel      |                         | D) Copper          |                               |

| 7)  | is the ratio of the change in output to change in the                        |                    |                   |      |                   |
|-----|------------------------------------------------------------------------------|--------------------|-------------------|------|-------------------|
|     | input.                                                                       |                    |                   |      |                   |
|     | A) Error                                                                     | B) Resolution      | C) Accuracy       | D)   | Sensitivity       |
| 8)  | Common anode type                                                            | display requires   | an active         |      | configuration     |
|     | for code conversion.                                                         |                    |                   |      |                   |
|     | A) Low                                                                       | B) High            | C) Neutral        | D)   | Multi digit       |
| 9)  | In CRO, which of the                                                         | following is not a | part of electron  | gun  | ?                 |
|     | A) Cathode                                                                   |                    | B) Grid           |      |                   |
|     | C) Accelerating Anod                                                         | е                  | D) X-Y plates     |      |                   |
| 10) | Ink jet recorder gives                                                       | frequency respor   | nse up to         |      | Hz.               |
|     | A) 1000                                                                      | B) 10              | C) 500            | D)   | 2000              |
| 11) | ) errors are inherent in measuring instrument because of                     |                    |                   |      | nent because of   |
|     | their mechanical struc                                                       | cture.             |                   |      |                   |
|     | A) Instrumental                                                              |                    | B) Environmen     | ıtal |                   |
|     | C) Random                                                                    |                    | D) Human          |      |                   |
| 12) | wavefo                                                                       | orms are most wic  | lely accurately n | neas | sured with r.m.s. |
|     | voltmeter.                                                                   |                    |                   |      |                   |
|     | A) Complex                                                                   | B) Continuous      | C) Dual           | D)   | Single            |
|     | A multimeter is a                                                            |                    |                   |      |                   |
|     | A) PMMC                                                                      | B) Digital         | C) Electronic     | D)   | Phase             |
| 14) | 4) In a strain measuring device using a strain gauge, the output quantity is |                    |                   |      |                   |
|     | A) Voltage                                                                   | B) Resistance      | C) Impedance      | D)   | Either A) or B)   |



| Seat |  |
|------|--|
| No.  |  |

# S.E. (Biomedical Engg.) (Part – II) Examination, 2018 (CGPA)

### **ELECTRONIC INSTRUMENTATION (Old)**

Day and Date: Saturday, 19-5-2018 Marks: 56

Time: 10.00 a.m. to 1.00 p.m.

#### SECTION - I

### 2. Attempt any four:

 $(4 \times 4 = 16)$ 

- 1) Explain each block of generalized measurement system in detail.
- 2) Compare between analog and digital phase meter.
- 3) Explain advantages over conventional type Analog Voltmeter.
- 4) What is dead time element? Explain in detail.
- 5) Define sensitivity of electronic voltmeter. Write a short note on FET voltmeter.

### 3. Attempt any two:

- 1) Explain first order system response of a system to step, ramp and impulse input and frequency response.
- 2) Explain principle working of ramp type, dual slope type and successive approximation type digital voltmeter.
- 3) Explain factor involved in selection of voltmeter.



### SECTION - II

### 4. Attempt any four:

 $(4 \times 4 = 16)$ 

- 1) Explain intensity modulation and velocity modulation of CRO.
- 2) Explain working of function generator with the help of block diagram.
- 3) Explain principle working of ramp type digital voltmeter.
- 4) Explain following term with respect to CRO:
  - a) Focus
  - b) ALT/CHOP.
- 5) Explain the concept and working of non fade display system.

### 5. Attempt any two:

 $(6 \times 2 = 12)$ 

- 1) Draw and explain block diagram of multi channel DAS system.
- 2) Explain design and working of magnetic, laser and ink jet type of writing system.
- 3) What is Lissajous pattern? Explain how it can be used for measurement of frequency and phase using suitable diagram.

Set R

| Seat |  |
|------|--|
| No.  |  |

Set S

# S.E. (Biomedical Engg.) (Part – II) Examination, 2018 (CGPA) ELECTRONIC INSTRUMENTATION (Old)

Day and Date: Saturday, 19-5-2018 Max. Marks: 70

Time: 10.00 a.m. to 1.00 p.m.

Instructions: 1) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book Page No. 3. Each question carries one mark.

2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

## MCQ/Objective Type Questions

|                                  | INIO CO O DICCLIVE I           | ype ducations                                  |       |               |
|----------------------------------|--------------------------------|------------------------------------------------|-------|---------------|
| Duration: 30 Minutes             |                                |                                                |       | Marks : 14    |
| 1. Choose the correct            | answer:                        |                                                |       | (1×14=14)     |
| 1)                               | _ metal is used to me          | asure temperati                                | ıre.  |               |
| A) Aluminum                      |                                | B) Platinum                                    |       |               |
| C) Stainless stee                | el                             | D) Copper                                      |       |               |
| 2)<br>input.                     | is the ratio of the            | change in outpo                                | ut to | change in the |
| A) Error                         | B) Resolution                  | C) Accuracy                                    | D)    | Sensitivity   |
| Common anode for code convers    | type display requires ion.     | an active                                      |       | configuration |
| A) Low                           | B) High                        | C) Neutral                                     | D)    | Multi digit   |
| A) Cathode                       | f the following is not a       | a part of electror<br>B) Grid<br>D) X-Y plates | n gun | ?             |
| 5) Ink jet recorder g<br>A) 1000 | gives frequency respo<br>B) 10 | onse up to<br>C) 500                           |       |               |

| 6)  |                    | errors are inherent in   | measuring ins      | trument because of         |
|-----|--------------------|--------------------------|--------------------|----------------------------|
|     | their mechanical   | structure.               |                    |                            |
|     | A) Instrumental    |                          | B) Environmen      | tal                        |
|     | C) Random          |                          | D) Human           |                            |
| 7)  | wa                 | aveforms are most wid    | ely accurately m   | neasured with r.m.s.       |
|     | voltmeter.         |                          |                    |                            |
|     | A) Complex         | B) Continuous            | C) Dual            | D) Single                  |
| 8)  | A multimeter is a  | a                        |                    |                            |
|     | A) PMMC            | B) Digital               | C) Electronic      | D) Phase                   |
| 9)  | In a strain measu  | uring device using a st  | rain gauge, the    | output quantity is         |
|     | A) Voltage         | B) Resistance            | C) Impedance       | D) Fither A) or B)         |
|     |                    |                          |                    |                            |
|     |                    | ris modulation is also o |                    |                            |
|     | ,                  | B) X                     | ,                  | ,                          |
|     |                    | ımes                     |                    |                            |
|     | A) < And =         | B) More than             | C) <               | D) > & =                   |
| 12) | In magnetic type   | of recorder, data is re  | placed for         | times.                     |
|     | A) ∞               | B) Triple                | C) Multiple        | D) Dual                    |
| 13) | A co               | onverts physical and b   | iological quantit  | y into electrical quantity |
|     | A) Sensor          | B) Transducer            | C) Biosensor       | D) None of above           |
| 14) | A Piezoelectric fo | orce transducer has a    | charge sensitiv    | rity of 20 PC/N. It is     |
|     | connected to cha   | arge amplifier and ove   | rall gain of trans | ducer and amplifier        |
|     | is 50 mV/N. The    | gain of the amplifier is |                    |                            |
|     | A) 1 mV/PC         | B) 1.5 mV/PC             | C) 2.5 mV/PC       | D) 4 mV/PC                 |
|     |                    |                          |                    |                            |



| Seat |  |
|------|--|
| No.  |  |

# S.E. (Biomedical Engg.) (Part – II) Examination, 2018 (CGPA)

### **ELECTRONIC INSTRUMENTATION (Old)**

Day and Date: Saturday, 19-5-2018 Marks: 56

Time: 10.00 a.m. to 1.00 p.m.

#### SECTION - I

### 2. Attempt any four:

 $(4 \times 4 = 16)$ 

- 1) Explain each block of generalized measurement system in detail.
- 2) Compare between analog and digital phase meter.
- 3) Explain advantages over conventional type Analog Voltmeter.
- 4) What is dead time element? Explain in detail.
- 5) Define sensitivity of electronic voltmeter. Write a short note on FET voltmeter.

### 3. Attempt any two:

- 1) Explain first order system response of a system to step, ramp and impulse input and frequency response.
- 2) Explain principle working of ramp type, dual slope type and successive approximation type digital voltmeter.
- 3) Explain factor involved in selection of voltmeter.

### SECTION - II

### 4. Attempt any four:

 $(4 \times 4 = 16)$ 

- 1) Explain intensity modulation and velocity modulation of CRO.
- 2) Explain working of function generator with the help of block diagram.
- 3) Explain principle working of ramp type digital voltmeter.
- 4) Explain following term with respect to CRO:
  - a) Focus
  - b) ALT/CHOP.
- 5) Explain the concept and working of non fade display system.

### 5. Attempt any two:

 $(6 \times 2 = 12)$ 

- 1) Draw and explain block diagram of multi channel DAS system.
- 2) Explain design and working of magnetic, laser and ink jet type of writing system.
- 3) What is Lissajous pattern? Explain how it can be used for measurement of frequency and phase using suitable diagram.

Set S

| SL | .R- | ГС | _ | 448 |
|----|-----|----|---|-----|
|----|-----|----|---|-----|



| Seat | 9-1 | _ |
|------|-----|---|
| No.  | Set | P |

### S.E. (Biomedical Engg.) (Part – II) (Old – CGPA) Examination, 2018 **DIGITAL DESIGN**

| Day and Date: Tuesday, 22-5-2018   | Max. Marks: 70                            |
|------------------------------------|-------------------------------------------|
| Time: 10.00 a.m. to 1.00 p.m.      |                                           |
| Instructions (1) O No 4 is assumed | and the should be a solve of the first 00 |

- Instructions: 1) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book Page No. 3. Each question carries one mark.
  - 2) Answer MCO/Objective type questions on Page No. 3.

| ,                                                                                                       | orget to mention, Q.P. Set (P                    | •          |
|---------------------------------------------------------------------------------------------------------|--------------------------------------------------|------------|
| MCQ/Object                                                                                              | tive Type Questions                              |            |
| Duration : 30 Minutes                                                                                   |                                                  | Marks : 14 |
| 1. Choose the correct answer:                                                                           |                                                  | (1×14=14)  |
| <ol> <li>Change in a state occurs durir</li> <li>a) Pulse transition</li> <li>c) Clock pulse</li> </ol> | ng<br>b) Outputs<br>d) Inputs                    |            |
| <ul><li>2) A combinational circuit can be</li><li>a) AND gate</li><li>c) NAND gate</li></ul>            | designed using only b) OR gate d) NOR gate       |            |
| 3) is the gray code to a) 101011 c) 011111                                                              | for the binary 101011.<br>b) 110101<br>d) 111110 |            |
| <ul><li>4) Register is a group of</li><li>a) Binary cell</li><li>c) Binary digit</li></ul>              | b) Binary number<br>d) Binary system             |            |
| <ul><li>5) A latch is sensit</li><li>a) Both level and edge</li><li>c) Level</li></ul>                  | tive.<br>b) Edge<br>d) None                      |            |
| <ul><li>6) A digital circuit that can store of a) XOR gate</li><li>c) Gate</li></ul>                    | on bit is a<br>b) Flip-flop<br>d) Register       |            |



| 7)  | Stack is also known asa) FIFO c) LIFO                                      | b) | emory.<br>Flash<br>LILO                                                       |                      |
|-----|----------------------------------------------------------------------------|----|-------------------------------------------------------------------------------|----------------------|
| 8)  | The decimal equivalent of hex numb a) $(58.1836)_{10}$ c) $(18.1836)_{10}$ | b) | 3A.2F) <sub>16</sub> is<br>(57.1735) <sub>10</sub><br>(58.1830) <sub>10</sub> |                      |
| 9)  | A single transistor can be used to but a) AND gate c) OR gate              | b) | NAND gate<br>NOT gate                                                         | digital logic gates. |
| 10) | Simplified form of the function $f = (x \cdot a) x + y$<br>c) $x + xyz$    | b) | + xy) (x + z) is<br>x + yz<br>y + xz                                          | S                    |
| 11) | Slowest memory element is<br>a) RAM<br>c) Cache                            | •  | ROM<br>Hard drive                                                             |                      |
| 12) | Excess 3 code is known asa) Weighted c) Algebraic                          | •  | code.<br>Redundancy<br>Self complen                                           | nenting              |
| 13) | The fast logic family is a) FCL c) TRL                                     | ,  | DRL<br>TTL                                                                    |                      |
| 14) | An 'n' variable k-map can have<br>a) n² cell<br>c) n <sup>n</sup> cell     | ,  | 2º cell<br>n2º cell                                                           |                      |



| Seat |  |
|------|--|
| No.  |  |

# S.E. (Biomedical Engg.) (Part – II) (Old – CGPA) Examination, 2018 DIGITAL DESIGN

Day and Date: Tuesday, 22-5-2018 Marks: 56

Time: 10.00 a.m. to 1.00 p.m.

### SECTION - I

2. Attempt any 4 questions:

 $(4 \times 4 = 16)$ 

- 1) Represent the decimal number (396)<sub>10</sub> in
  - a) Binary code
  - b) BCD code
  - c) Excess-3 code
  - d) Hex code
- 2) State and explain Demorgan's theorem for logic gates.
- 3) Realize and design circuit for the given logic equation :

a) 
$$Y = \overline{AB} + A\overline{B}$$

b) 
$$Y = \overline{ABC} + A\overline{BC} + A\overline{BC}$$

- 4) Explain working of Schottky TTL design with neat figure.
- 5) Define and differentiate latch and flip flop.
- 3. Attempt any 2 questions:

- 1) Design a binary to gray code converter using EX-OR gate and k-map.
- 2) Design 4-variable 8: 1 multiplexer and mention its truth table.
- 3) Explain master slave J-K flip flop using NAND gate.

### SECTION - II

4. Attempt any 4 questions:

 $(4 \times 4 = 16)$ 

- 1) Perform following operations:
  - a)  $(53)_8 (37)_8$
  - b)  $(7F)_{16} + (BA)_{16}$
- 2) Draw and explain working of half subtractor circuit with its truth table.
- 3) List digital to analog converter circuits and explain any one in detail.
- 4) Draw and explain working of Bipolar RAM cell.
- 5) Explain working and significance of arithmetic and logic unit in detail.
- 5. Attempt any 2 questions:

 $(6 \times 2 = 12)$ 

- 1) Design divide by 8 ripple counter using flip flops. Draw its timing diagram for Q output.
- 2) Draw and explain working of dual slope A to D converter in detail.
- 3) Write a short note on:
  - a) EPROM.
  - b) FLASH memories.

\_\_\_\_\_

| Seat | 0.4 |   |
|------|-----|---|
| No.  | Set | Q |

# S.E. (Biomedical Engg.) (Part – II) (Old – CGPA) Examination, 2018 DIGITAL DESIGN

|          | DIGITAL                                                                                                                                                                                                                                                                                         | DESIGN                                                                                   |                        |  |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|------------------------|--|
| -        | Day and Date : Tuesday, 22-5-2018 Max. Marks : 70 Time : 10.00 a.m. to 1.00 p.m.                                                                                                                                                                                                                |                                                                                          |                        |  |
| ,        | <ul> <li>Instructions: 1) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book Page No. 3. Each question carries one mark.</li> <li>2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.</li> </ul> |                                                                                          |                        |  |
| <b>.</b> | MCQ/Objective                                                                                                                                                                                                                                                                                   | Type Questions                                                                           |                        |  |
| Duratio  | n : 30 Minutes                                                                                                                                                                                                                                                                                  |                                                                                          | Marks: 14              |  |
| 1. Cho   | oose the correct answer :                                                                                                                                                                                                                                                                       |                                                                                          | (1×14=14)              |  |
| 1)       | The decimal equivalent of hex numbers $(58.1836)_{10}$ c) $(18.1836)_{10}$                                                                                                                                                                                                                      | ber (3A.2F) <sub>16</sub> is<br>b) (57.1735) <sub>10</sub><br>d) (58.1830) <sub>10</sub> |                        |  |
| 2)       | <ul><li>A single transistor can be used to b</li><li>a) AND gate</li><li>c) OR gate</li></ul>                                                                                                                                                                                                   | uild<br>b) NAND gate<br>d) NOT gate                                                      | _ digital logic gates. |  |
| 3)       | Simplified form of the function $f = (x a) x + y c) x + xyz$                                                                                                                                                                                                                                    | ( + y + xy) (x + z) i<br>b) x + yz<br>d) y + xz                                          | S                      |  |
| 4)       | Slowest memory element is<br>a) RAM<br>c) Cache                                                                                                                                                                                                                                                 | b) ROM<br>d) Hard drive                                                                  |                        |  |
| 5)       | Excess 3 code is known as<br>a) Weighted<br>c) Algebraic                                                                                                                                                                                                                                        | code. b) Redundancy d) Self compler                                                      |                        |  |
| 6)       | The fast logic family is a) FCL c) TRL                                                                                                                                                                                                                                                          | b) DRL<br>d) TTL                                                                         |                        |  |

| 7)   | An 'n' variable k-map can have<br>a) n² cell<br>c) n <sup>n</sup> cell | •  | 2 <sup>n</sup> cell<br>n2 <sup>n</sup> cell |
|------|------------------------------------------------------------------------|----|---------------------------------------------|
| 8)   | Change in a state occurs during a) Pulse transition c) Clock pulse     | ,  | Outputs<br>Inputs                           |
| 9)   | A combinational circuit can be design<br>a) AND gate<br>c) NAND gate   | b) | l using only<br>OR gate<br>NOR gate         |
| 10)  | is the gray code for the a) 101011 c) 011111                           | b) | ary 101011.<br>110101<br>111110             |
| l 1) | Register is a group of a) Binary cell c) Binary digit                  | -  | Binary number<br>Binary system              |
| 12)  | A latch is sensitive.  a) Both level and edge c) Level                 | •  | Edge<br>None                                |
| 13)  | A digital circuit that can store on bit is a) XOR gate c) Gate         | b) | Flip-flop<br>Register                       |
| 14)  | Stack is also known asa) FIFO c) LIFO                                  | b) | emory.<br>Flash<br>LILO                     |
|      |                                                                        |    |                                             |



| Seat |  |
|------|--|
| No.  |  |

# S.E. (Biomedical Engg.) (Part – II) (Old – CGPA) Examination, 2018 DIGITAL DESIGN

Day and Date: Tuesday, 22-5-2018 Marks: 56

Time: 10.00 a.m. to 1.00 p.m.

### SECTION - I

2. Attempt any 4 questions:

 $(4 \times 4 = 16)$ 

- 1) Represent the decimal number (396)<sub>10</sub> in
  - a) Binary code
  - b) BCD code
  - c) Excess-3 code
  - d) Hex code
- 2) State and explain Demorgan's theorem for logic gates.
- 3) Realize and design circuit for the given logic equation :

a) 
$$Y = \overline{AB} + A\overline{B}$$

b) 
$$Y = \overline{ABC} + A\overline{BC} + A\overline{BC}$$

- 4) Explain working of Schottky TTL design with neat figure.
- 5) Define and differentiate latch and flip flop.
- 3. Attempt any 2 questions :

- 1) Design a binary to gray code converter using EX-OR gate and k-map.
- 2) Design 4-variable 8: 1 multiplexer and mention its truth table.
- 3) Explain master slave J-K flip flop using NAND gate.

### SECTION - II

4. Attempt any 4 questions:

 $(4 \times 4 = 16)$ 

- 1) Perform following operations:
  - a)  $(53)_8 (37)_8$
  - b)  $(7F)_{16} + (BA)_{16}$
- 2) Draw and explain working of half subtractor circuit with its truth table.
- 3) List digital to analog converter circuits and explain any one in detail.
- 4) Draw and explain working of Bipolar RAM cell.
- 5) Explain working and significance of arithmetic and logic unit in detail.
- 5. Attempt any 2 questions:

 $(6 \times 2 = 12)$ 

- 1) Design divide by 8 ripple counter using flip flops. Draw its timing diagram for Q output.
- 2) Draw and explain working of dual slope A to D converter in detail.
- 3) Write a short note on:
  - a) EPROM.
  - b) FLASH memories.

\_\_\_\_\_

| Seat |  |
|------|--|
| No.  |  |

c) x + xyz

Set R

# S.E. (Biomedical Engg.) (Part – II) (Old – CGPA) Examination, 2018 DIGITAL DESIGN

| Day and Date : Tuesday<br>Time : 10.00 a.m. to 1.00                             |                                                    |                                                                                          | Max. Marks : 70                                                                        |
|---------------------------------------------------------------------------------|----------------------------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| ,                                                                               | minutes in Answe carries one mark.  Answer MCQ/Obj | er Book Page No<br>ective type ques                                                      | be solved in first 30  c. 3. Each question  stions on Page No. 3  Set (P/Q/R/S) on Top |
| Danielia a coo Miranta                                                          | MCQ/Objective T                                    | ype Questions                                                                            | Maula : 4.4                                                                            |
| Duration: 30 Minutes                                                            |                                                    |                                                                                          | Marks : 14                                                                             |
| 1. Choose the correct a                                                         | answer:                                            |                                                                                          | (1×14=14)                                                                              |
| <ol> <li>A latch is</li> <li>Both level and</li> <li>Level</li> </ol>           |                                                    | b) Edge<br>d) None                                                                       |                                                                                        |
| <ol> <li>A digital circuit that a) XOR gate</li> <li>Gate</li> </ol>            | nat can store on bit                               | is a<br>b) Flip-flop<br>d) Register                                                      |                                                                                        |
| <ul><li>3) Stack is also kno</li><li>a) FIFO</li><li>c) LIFO</li></ul>          | own as                                             | _ memory.<br>b) Flash<br>d) LILO                                                         |                                                                                        |
| 4) The decimal equal (58.1836) <sub>10</sub> c) (18.1836) <sub>10</sub>         | ivalent of hex numb                                | ber (3A.2F) <sub>16</sub> is<br>b) (57.1735) <sub>10</sub><br>d) (58.1830) <sub>10</sub> |                                                                                        |
| <ul><li>5) A single transiston</li><li>a) AND gate</li><li>c) OR gate</li></ul> | or can be used to bu                               | uild<br>b) NAND gate<br>d) NOT gate                                                      | digital logic gates.                                                                   |
| <ol> <li>Simplified form of a) x + y</li> </ol>                                 | of the function $f = (x)$                          | + y + xy) (x + z) i<br>b) x + yz                                                         | S                                                                                      |

d) y + xz



| 7)  | Slowest memory element is a) RAM a) Casha | •   | ROM<br>Hard drive    |
|-----|-------------------------------------------|-----|----------------------|
| 8)  | c) Cache  Excess 3 code is known as       | u)  | Hard drive code.     |
| O)  | a) Weighted                               | b)  | Redundancy           |
|     | c) Algebraic                              | •   | Self complementing   |
| 9)  | The fast logic family is                  |     |                      |
|     | a) FCL                                    | ,   | DRL                  |
|     | c) TRL                                    | d)  | TTL                  |
| 10) | An 'n' variable k-map can have            |     |                      |
|     | a) n² cell                                | b)  | 2 <sup>n</sup> cell  |
|     | c) n <sup>n</sup> cell                    | d)  | n2 <sup>n</sup> cell |
| 11) | Change in a state occurs during           |     |                      |
|     | a) Pulse transition                       | b)  | Outputs              |
|     | c) Clock pulse                            | d)  | Inputs               |
| 12) | A combinational circuit can be design     | ned | l using only         |
|     | a) AND gate                               | b)  | OR gate              |
|     | c) NAND gate                              | d)  | NOR gate             |
| 13) | is the gray code for the                  | bin | ary 101011.          |
|     | a) 101011                                 | b)  | 110101               |
|     | c) 011111                                 | d)  | 111110               |
| 14) | Register is a group of                    |     |                      |
|     | a) Binary cell                            | b)  | Binary number        |
|     | c) Binary digit                           | d)  | Binary system        |
|     |                                           |     |                      |
|     |                                           |     |                      |



| Seat |  |
|------|--|
| No.  |  |

# S.E. (Biomedical Engg.) (Part – II) (Old – CGPA) Examination, 2018 DIGITAL DESIGN

Day and Date: Tuesday, 22-5-2018 Marks: 56

Time: 10.00 a.m. to 1.00 p.m.

### SECTION - I

2. Attempt any 4 questions:

 $(4 \times 4 = 16)$ 

- 1) Represent the decimal number (396)<sub>10</sub> in
  - a) Binary code
  - b) BCD code
  - c) Excess-3 code
  - d) Hex code
- 2) State and explain Demorgan's theorem for logic gates.
- 3) Realize and design circuit for the given logic equation :
  - a)  $Y = \overline{AB} + A\overline{B}$
  - b)  $Y = \overline{ABC} + A\overline{BC} + A\overline{BC}$
- 4) Explain working of Schottky TTL design with neat figure.
- 5) Define and differentiate latch and flip flop.

3. Attempt any 2 questions:

- 1) Design a binary to gray code converter using EX-OR gate and k-map.
- 2) Design 4-variable 8: 1 multiplexer and mention its truth table.
- 3) Explain master slave J-K flip flop using NAND gate.

### SECTION - II

4. Attempt any 4 questions:

 $(4 \times 4 = 16)$ 

- 1) Perform following operations:
  - a)  $(53)_8 (37)_8$
  - b)  $(7F)_{16} + (BA)_{16}$
- 2) Draw and explain working of half subtractor circuit with its truth table.
- 3) List digital to analog converter circuits and explain any one in detail.
- 4) Draw and explain working of Bipolar RAM cell.
- 5) Explain working and significance of arithmetic and logic unit in detail.
- 5. Attempt any 2 questions:

 $(6 \times 2 = 12)$ 

- 1) Design divide by 8 ripple counter using flip flops. Draw its timing diagram for Q output.
- 2) Draw and explain working of dual slope A to D converter in detail.
- 3) Write a short note on:
  - a) EPROM.
  - b) FLASH memories.

\_\_\_\_\_

|  | SLR-TC - 448 |
|--|--------------|
|--|--------------|

| Seat | 0.4 |   |
|------|-----|---|
| No.  | Set | S |

## S.E. (Biomedical Engg.) (Part – II) (Old – CGPA) Examination, 2018 DIGITAL DESIGN

| and bate in according to the state of the st | Day and Date : Tuesday, 22-5-2018 | Max. Marks: 70 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|----------------|
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|----------------|

Time: 10.00 a.m. to 1.00 p.m.

c) Clock pulse

Instructions: 1) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book Page No. 3. Each question carries one mark.

2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

| of Page.                                                                                  |                                                   |           |
|-------------------------------------------------------------------------------------------|---------------------------------------------------|-----------|
| MCQ/Objective                                                                             | Type Questions                                    |           |
| Duration : 30 Minutes                                                                     |                                                   | Marks: 14 |
| 1. Choose the correct answer:                                                             |                                                   | (1×14=14) |
| <ul><li>1) Simplified form of the function f = a) x + y</li><li>c) x + xyz</li></ul>      | (x + y + xy) (x + z) is<br>b) x + yz<br>d) y + xz |           |
| <ul><li>2) Slowest memory element is</li><li>a) RAM</li><li>c) Cache</li></ul>            | b) ROM<br>d) Hard drive                           |           |
| <ul><li>3) Excess 3 code is known as</li><li>a) Weighted</li><li>c) Algebraic</li></ul>   | code. b) Redundancy d) Self complementing         |           |
| <ul><li>4) The fast logic family is</li><li>a) FCL</li><li>c) TRL</li></ul>               | b) DRL<br>d) TTL                                  |           |
| <ul><li>5) An 'n' variable k-map can have</li><li>a) n² cell</li><li>c) nn cell</li></ul> | b) 2 <sup>n</sup> cell<br>d) n2 <sup>n</sup> cell |           |
| <ul><li>6) Change in a state occurs during</li><li>a) Pulse transition</li></ul>          | b) Outputs                                        |           |

d) Inputs



| 7)  | A combinational circuit can be design<br>a) AND gate<br>c) NAND gate                | ned using only<br>b) OR gate<br>d) NOR gate                                             |
|-----|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| 8)  | a) 101011<br>c) 011111                                                              | binary 101011.<br>b) 110101<br>d) 111110                                                |
| 9)  | Register is a group of a) Binary cell c) Binary digit                               | <ul><li>b) Binary number</li><li>d) Binary system</li></ul>                             |
| 10) | A latch is sensitive.  a) Both level and edge c) Level                              | b) Edge<br>d) None                                                                      |
| 11) | A digital circuit that can store on bit is a) XOR gate c) Gate                      | s a<br>b) Flip-flop<br>d) Register                                                      |
| 12) | Stack is also known as<br>a) FIFO<br>c) LIFO                                        | _ memory.<br>b) Flash<br>d) LILO                                                        |
| 13) | The decimal equivalent of hex numbers $a$ ) $(58.1836)_{10}$ $c$ ) $(18.1836)_{10}$ | er (3A.2F) <sub>16</sub> is<br>b) (57.1735) <sub>10</sub><br>d) (58.1830) <sub>10</sub> |
| 14) | A single transistor can be used to bu<br>a) AND gate<br>c) OR gate                  | ild digital logic gates. b) NAND gate d) NOT gate                                       |



| Soot |  |
|------|--|
| Seat |  |
| No.  |  |

# S.E. (Biomedical Engg.) (Part – II) (Old – CGPA) Examination, 2018 DIGITAL DESIGN

Day and Date: Tuesday, 22-5-2018 Marks: 56

Time: 10.00 a.m. to 1.00 p.m.

### SECTION - I

2. Attempt any 4 questions:

 $(4 \times 4 = 16)$ 

- 1) Represent the decimal number (396)<sub>10</sub> in
  - a) Binary code
  - b) BCD code
  - c) Excess-3 code
  - d) Hex code
- 2) State and explain Demorgan's theorem for logic gates.
- 3) Realize and design circuit for the given logic equation :

a) 
$$Y = \overline{AB} + A\overline{B}$$

b) 
$$Y = \overline{A}BC + A\overline{B}C + A\overline{B}\overline{C}$$

- 4) Explain working of Schottky TTL design with neat figure.
- 5) Define and differentiate latch and flip flop.

3. Attempt any 2 questions:

- 1) Design a binary to gray code converter using EX-OR gate and k-map.
- 2) Design 4-variable 8: 1 multiplexer and mention its truth table.
- 3) Explain master slave J-K flip flop using NAND gate.

### 

### SECTION - II

4. Attempt any 4 questions:

 $(4 \times 4 = 16)$ 

- 1) Perform following operations:
  - a)  $(53)_8 (37)_8$
  - b)  $(7F)_{16} + (BA)_{16}$
- 2) Draw and explain working of half subtractor circuit with its truth table.
- 3) List digital to analog converter circuits and explain any one in detail.
- 4) Draw and explain working of Bipolar RAM cell.
- 5) Explain working and significance of arithmetic and logic unit in detail.
- 5. Attempt any 2 questions:

 $(6 \times 2 = 12)$ 

- 1) Design divide by 8 ripple counter using flip flops. Draw its timing diagram for Q output.
- 2) Draw and explain working of dual slope A to D converter in detail.
- 3) Write a short note on:
  - a) EPROM.
  - b) FLASH memories.

\_\_\_\_\_

## **SLR-TC - 449**

| Seat |                    | Set                                          | D |  |
|------|--------------------|----------------------------------------------|---|--|
| No.  |                    | Set                                          |   |  |
|      | S F (Part - II) (F | Riomedical Enga ) (Old CGPA) Examination 201 | 8 |  |

# S.E. (Part – II) (Biomedical Engg.) (Old CGPA) Examination, 2018 ELECTRONIC CIRCUITS ANALYSIS AND DESIGN – II

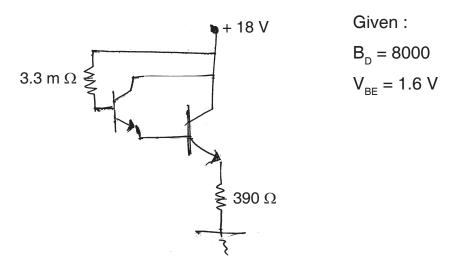
| Day and Date: Thursday, Time: 10.00 a.m. to 1.00                                     |                                                                                 |                                                      | Total Marks: 70                                                                    |
|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------------------------------------|
| 3<br>c<br>2) <b>A</b>                                                                | <b>80 minutes</b> in Ans<br>earries <b>one</b> mark.<br><b>Answer MCQ/Obj</b> o | swer Book Page Nective type quest                    | d be solved in first No. 3. Each question Fions on Page No. 3 Set (P/Q/R/S) on Top |
| •                                                                                    | n rage.                                                                         |                                                      |                                                                                    |
| Duration : 30 Minutes                                                                | MCQ/Objective T                                                                 | ype Questions                                        | Marks : 14                                                                         |
| 1. Choose the correct ar                                                             | nswer:                                                                          |                                                      | (1×14=14)                                                                          |
|                                                                                      | b) $\beta_1.\beta_2$                                                            | c) $\beta_1/\beta_2$                                 | d) $\beta_2/\beta_1$                                                               |
| <ul><li>2) configuration</li><li>a) Fixed bias</li><li>c) Emitter followe</li></ul>  |                                                                                 |                                                      | r                                                                                  |
| <ul><li>3) Typical value of control</li><li>a) &gt; 1</li><li>c) undefined</li></ul> | urrent gain of a C                                                              | B configuration is b) between 1 and d) between 100 a | d 50                                                                               |
| <ol> <li>Amplifier gain for leading should be minimue</li> <li>43</li> </ol>         |                                                                                 | c) 10                                                | arkhausen's criteria<br>d) 29                                                      |
| 5) componer                                                                          |                                                                                 | y oscillator feedba<br>c) Transistor                 | _                                                                                  |
| 6) The contact a) fixed bias c) emitter followe                                      | onfiguration is freq                                                            | •                                                    | pedance matching.<br>r bias                                                        |
| 7) type o<br>of the cycle.<br>a) Class A                                             | f power amplifier is                                                            | b) Class B or AB                                     | on at less than 180°                                                               |

| 8)   | In class B operation active the maximum a) 0.5 | m power dissipate  |                        | nsis  | tor?            |
|------|------------------------------------------------|--------------------|------------------------|-------|-----------------|
| 9)   | In an unbiased emi                             | ,                  | ,                      | ,     |                 |
|      | a) V <sub>e</sub>                              | <b>b)</b> β        | c) βV <sub>e</sub>     | d)    | l <sub>b</sub>  |
| 0)   | Op-amps used as configuration.                 | a high and low     | pass filter circuits   | emp   | oloy            |
|      | a) non-inverting                               |                    | b) comparator          |       |                 |
|      | c) open loop                                   |                    | d) inverting           |       |                 |
| l 1) | ampli                                          |                    |                        |       |                 |
|      | a) Class A                                     | b) Class B         | c) Class C             | d)    | Class AB        |
| 12)  | amon                                           | g the following am | plifier circuit exhibi | t the | output voltage  |
|      | in the form of phas                            | e inversion.       |                        |       |                 |
|      | a) Adder                                       |                    | b) Subtractor          |       |                 |
|      | c) Integrator                                  |                    | d) Differentiator      |       |                 |
| 13)  | A circuit whose out signals is considered      |                    |                        |       | een the input   |
|      | a) common mode                                 |                    | b) darlington          |       |                 |
|      | c) differential                                |                    | d) operational         |       |                 |
| 14)  | The efficiency of a 15V and an output          |                    | •                      | ifier | for a supply of |
|      | a) 25%                                         | b) 33.3%           | c) 50%                 | d)    | 78.5%           |
|      |                                                |                    |                        |       |                 |



| Seat |  |
|------|--|
| No.  |  |

# S.E. (Part – II) (Biomedical Engg.) (Old CGPA) Examination, 2018 ELECTRONIC CIRCUITS ANALYSIS AND DESIGN – II


Day and Date: Thursday, 24-5-2018 Marks: 56

Time: 10.00 a.m. to 1.00 p.m.

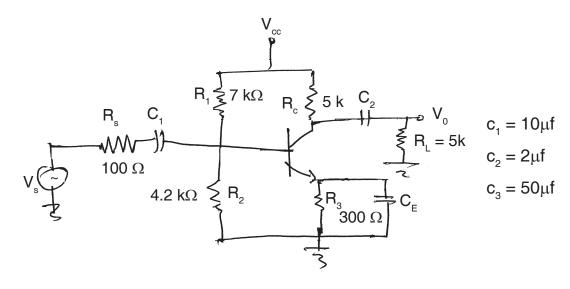
### SECTION - I

### 2. Attempt any four questions :

- 1) With the help of diagram explain working of BJT Darlington pair circuit and mention its advantages.
- 2) Explain working and analyze class B power amplifier.
- 3) Calculate the DC bias voltages and currents in the following circuits.



- 4) Draw and explain working of RC coupled oscillator with its frequency response.
- 5) Compare between class B amplifier with class C amplifier.




3. Attempt any two questions:

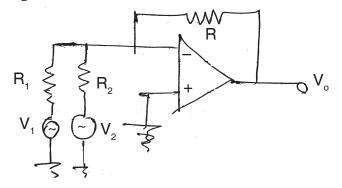
 $(6 \times 2 = 12)$ 

1) For the common emitter BJT amplifier calculate the values of f<sub>L</sub> and f<sub>H</sub> and midband voltage gain amid. Assume following parameter.

$$\beta$$
 = 80, g  $_{m}$  = 50  $\mu A/V,~r_{_{\pi}}$  = 1.3 kΩ,  $C_{_{\pi}}$  = 15 pf  $~c_{_{\mu}}$  = 1pf.



- 2) Compare different types at power amplifier based on following factors :
  - a) Conduction angle
  - b) Position of Q point
  - c) Efficiency
  - d) Distortion.
- 3) Describe the effect of coupling, bypass and load capacitors on low frequency response of BJT.


SECTION - II

4. Attempt any four questions :

- 1) Define and differentiate between linear amplifier and error amplifier.
- 2) List ideal characteristics of op-amp.



- 3) Draw the circuit for basic differentiator using op-amp and find the expression for the output voltage.
- 4) Find the output voltage for the circuit shown if  $R_f=10k\Omega,\ R_1=2k\Omega,\ R_2=5k\Omega.$



5) Differentiate between first order and second order low pass butterworth filter.

### 5. Attempt any 2 questions:

- 1) Design an instrumentation amplifier of gain 1000 for ECG recording machine.
- 2) With the help of circuit diagrams and waveforms explain application of op-amp as zero crossing detector.
- 3) Write a short note on:
  - a) Op-amp as Schmitt trigger working and application.
  - b) Definition of CMRR, PSRR, Shield drive.

|--|--|

## **SLR-TC - 449**

| Seat | Cat | Q |  |
|------|-----|---|--|
| No.  | Set | u |  |

# S.E. (Part – II) (Biomedical Engg.) (Old CGPA) Examination, 2018 ELECTRONIC CIRCUITS ANALYSIS AND DESIGN – II

| •        | Day and Date: Thursday, 24-5-2018 Total Marks: 70 Time: 10.00 a.m. to 1.00 p.m. |                                              |                                                                      |                                                                                      |  |  |
|----------|---------------------------------------------------------------------------------|----------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------------------|--|--|
|          | ·                                                                               | 30 minutes in a carries one man Answer MCQ/C | Answer Book Page<br>k.<br><b>Objective type ques</b>                 | Id be solved in first No. 3. Each question stions on Page No. 3 Set (P/Q/R/S) on Top |  |  |
|          |                                                                                 | MCQ/Objectiv                                 | e Type Questions                                                     |                                                                                      |  |  |
| Duration | on : 30 Minutes                                                                 |                                              |                                                                      | Marks: 14                                                                            |  |  |
| 1. Cł    | noose the correct                                                               | answer:                                      |                                                                      | (1×14=14)                                                                            |  |  |
| 1)       |                                                                                 | num power dissip                             | on of V <sub>cc</sub> should the pated by the output tr<br>c) 0.707  | ansistor?                                                                            |  |  |
| 2)       | ) In an unbiased of model.                                                      | emitter bias confiç                          | guration h <sub>ie</sub> replaces .                                  | in the ${ m V_e}$                                                                    |  |  |
|          | a) $V_e$                                                                        | <b>b)</b> β                                  | c) $\beta V_e$                                                       | d) I <sub>b</sub>                                                                    |  |  |
| 3)       | Op-amps used configuration.                                                     | as a high and lo                             | ow pass filter circuits                                              | s employ                                                                             |  |  |
|          | a) non-inverting                                                                | l                                            | b) comparator                                                        |                                                                                      |  |  |
| 4)       | c) open loop                                                                    |                                              | d) inverting                                                         |                                                                                      |  |  |
| 4,       | a) Class A                                                                      | h) Class B                                   | frequency multiplier.<br>c) Class C                                  | d) Class AB                                                                          |  |  |
| 5)       |                                                                                 | ong the following                            | amplifier circuit exhibits b) Subtractor d) Differentiator           |                                                                                      |  |  |
| 6)       |                                                                                 | lered to be                                  | onal to the difference type of amplible b) darlington d) operational |                                                                                      |  |  |

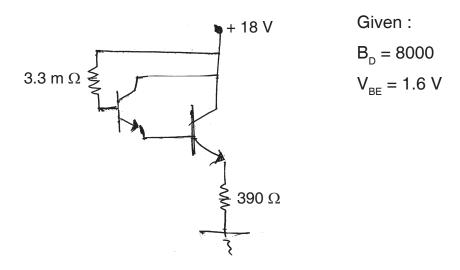


| 7)  | The efficiency of a 15V and an output a) 25%                |                     | is _  |                                                        |      |                                |
|-----|-------------------------------------------------------------|---------------------|-------|--------------------------------------------------------|------|--------------------------------|
| 8)  | The current gain fo                                         | r the Darlington co | onn   | ection is                                              |      |                                |
| 9)  | a) $\beta_1$ .( $\beta_2$ /2) configuration                 |                     |       |                                                        |      | P <sub>2</sub> /P <sub>1</sub> |
| ŕ   | <ul><li>a) Fixed bias</li><li>c) Emitter follower</li></ul> |                     | ,     | Voltage divider<br>Emitter-collecte                    |      |                                |
| 10) | Typical value of cu<br>a) > 1<br>c) undefined               | rrent gain of a Cl  | b)    | onfiguration is _<br>between 1 and<br>between 100 a    | 50   |                                |
| 11) | Amplifier gain for R should be minimum                      |                     | illat | ions to obey Ba                                        | rkh  | ausen's criteria               |
|     | a) 43                                                       | b) 4                | c)    | 10                                                     | d)   | 29                             |
| 12) | componen                                                    | t is used in Hartle | y os  | scillator feedbac                                      | ck s | ystem.                         |
|     | a) Inductor                                                 | b) Capacitor        | c)    | Transistor                                             | d)   | Resistor                       |
| 13) | The co<br>a) fixed bias<br>c) emitter follower              |                     | b)    | tly used for imp<br>voltage divider<br>collector feedb | bia  | S                              |
| 14) | type of                                                     | power amplifier is  | bia   | sed for operatio                                       | n a  | t less than 180 $^\circ$       |
|     | of the cycle.                                               |                     |       |                                                        |      |                                |
|     | a) Class A                                                  |                     | ,     | Class B or AB                                          |      |                                |
|     | c) Class C                                                  |                     | a)    | Class D                                                |      |                                |
|     |                                                             |                     |       |                                                        |      |                                |
|     |                                                             |                     |       |                                                        |      |                                |



| Seat |  |
|------|--|
| No.  |  |

# S.E. (Part – II) (Biomedical Engg.) (Old CGPA) Examination, 2018 ELECTRONIC CIRCUITS ANALYSIS AND DESIGN – II


Day and Date: Thursday, 24-5-2018 Marks: 56

Time: 10.00 a.m. to 1.00 p.m.

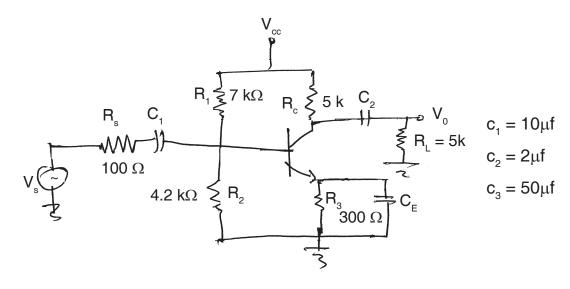
### SECTION - I

### 2. Attempt any four questions:

- 1) With the help of diagram explain working of BJT Darlington pair circuit and mention its advantages.
- 2) Explain working and analyze class B power amplifier.
- 3) Calculate the DC bias voltages and currents in the following circuits.



- 4) Draw and explain working of RC coupled oscillator with its frequency response.
- 5) Compare between class B amplifier with class C amplifier.




3. Attempt any two questions:

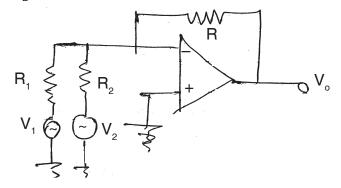
 $(6 \times 2 = 12)$ 

1) For the common emitter BJT amplifier calculate the values of  $f_L$  and  $f_H$  and midband voltage gain amid. Assume following parameter.

$$\beta$$
 = 80, g  $_{m}$  = 50  $\mu A/V,~r_{_{\pi}}$  = 1.3 kΩ,  $C_{_{\pi}}$  = 15 pf  $~c_{_{\mu}}$  = 1pf.



- 2) Compare different types at power amplifier based on following factors :
  - a) Conduction angle
  - b) Position of Q point
  - c) Efficiency
  - d) Distortion.
- 3) Describe the effect of coupling, bypass and load capacitors on low frequency response of BJT.


SECTION - II

4. Attempt any four questions :

- 1) Define and differentiate between linear amplifier and error amplifier.
- 2) List ideal characteristics of op-amp.



- 3) Draw the circuit for basic differentiator using op-amp and find the expression for the output voltage.
- 4) Find the output voltage for the circuit shown if  $R_f=10k\Omega,\ R_1=2k\Omega,\ R_2=5k\Omega.$



5) Differentiate between first order and second order low pass butterworth filter.

### 5. Attempt any 2 questions :

- 1) Design an instrumentation amplifier of gain 1000 for ECG recording machine.
- 2) With the help of circuit diagrams and waveforms explain application of op-amp as zero crossing detector.
- 3) Write a short note on:
  - a) Op-amp as Schmitt trigger working and application.
  - b) Definition of CMRR, PSRR, Shield drive.

### **SLR-TC - 449**

| Seat No.                             |                                                 |                                                                | Set R                                                            |
|--------------------------------------|-------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------------------|
| •                                    | – II) (Biomedical Eng<br>CTRONIC CIRCUITS       | ,                                                              | •                                                                |
| Day and Date : The Time : 10.00 a.m. | nursday, 24-5-2018<br>to 1.00 p.m.              |                                                                | Total Marks : 70                                                 |
| Instruction                          | 30 minutes in a carries one mar 2) Answer MCQ/C | Answer Book Page<br>k.<br><b>Objective type que</b> s          | No. 3. Each question  Stions on Page No. 3  Set (P/Q/R/S) on Top |
|                                      | MCQ/Objectiv                                    | e Type Questions                                               |                                                                  |
| Duration: 30 Minu                    | utes                                            |                                                                | Marks : 14                                                       |
| 1. Choose the co                     | orrect answer :                                 |                                                                | (1×14=14)                                                        |
| 1) co<br>a) Inducto                  | omponent is used in Ha<br>or b) Capacitor       | rtley oscillator feedb<br>c) Transistor                        | ack system.<br>d) Resistor                                       |
| 2) The<br>a) fixed bi<br>c) emitter  |                                                 | requently used for in<br>b) voltage divid<br>d) collector feed | er bias                                                          |
|                                      | _ type of power amplifie                        | er is biased for opera                                         | tion at less than 180°                                           |
| of the cycl<br>a) Class A            |                                                 | b) Class B or A                                                | В                                                                |
| c) Class (                           |                                                 | d) Class D                                                     | _                                                                |

4) In class B operation at what friction of  $V_{\rm cc}$  should the level of  $V_{\rm L}(P)$  be to

5) In an unbiased emitter bias configuration  $h_{ie}$  replaces \_\_\_\_\_ in the  $V_{e}$ 

6) Op-amps used as a high and low pass filter circuits employ \_\_\_\_\_

active the maximum power dissipated by the output transistor?

b) 0.636

b) β

b) comparator

d) 1

d)  $I_{b}$ 

a) non-inverting

c) 0.707

c)  $\beta V_e$ 

c) open loop

configuration.

a) 0.5

model.

a)  $V_{e}$ 

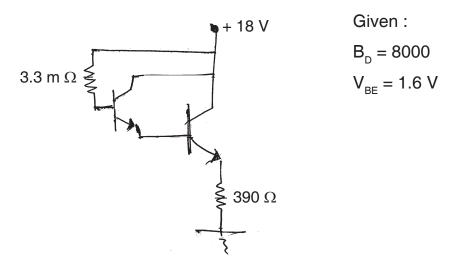
d) inverting

| 7)   | ampli                                              | fier is used as fred                         | que   | ncy multiplier.             |     |                   |
|------|----------------------------------------------------|----------------------------------------------|-------|-----------------------------|-----|-------------------|
|      | a) Class A                                         |                                              |       |                             | d)  | Class AB          |
| 8)   | amon                                               | g the following am                           | plif  | ier circuit exhibit         | the | e output voltage  |
|      | in the form of phas                                | e inversion.                                 |       |                             |     |                   |
|      | a) Adder                                           |                                              | ,     | Subtractor                  |     |                   |
|      | c) Integrator                                      |                                              | ,     | Differentiator              |     |                   |
| 9)   | A circuit whose our signals is consider            |                                              |       |                             |     | veen the input    |
|      | a) common mode                                     |                                              |       | darlington                  |     |                   |
|      | c) differential                                    |                                              | d)    | operational                 |     |                   |
| 10)  | The efficiency of a 15V and an output              | of $V/(D) = 10 V/i$                          | 0     |                             |     |                   |
|      | a) 25%                                             | b) 33.3%                                     | c)    | 50%                         | d)  | 78.5%             |
| 11)  | The current gain for a) $\beta_1$ .( $\beta_2$ /2) | or the Darlington c                          | onr   | ection is                   |     |                   |
|      | a) $\beta_1 \cdot (\beta_2/2)$                     | b) $\beta_1.\beta_2$                         | c)    | $\beta_1/\beta_2$           | d)  | $\beta_2/\beta_1$ |
| 12)  | configuratio                                       | ns has the lowest                            | ou    | put impedance.              |     |                   |
|      | a) Fixed bias                                      |                                              | b)    | Voltage divider             | •   |                   |
|      | c) Emitter follower                                | •                                            | d)    | Emitter-collecte            | er  |                   |
| 13)  | Typical value of cu                                | rrent gain of a C                            |       | _                           |     |                   |
|      | <ul><li>a) &gt; 1</li><li>c) undefined</li></ul>   |                                              | ,     | between 1 and between 100 a |     |                   |
| 4.4\ | •                                                  | 00 mln n n n n n 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | ,     |                             |     |                   |
| 14)  | Amplifier gain for F should be minimur             |                                              | ıııaı | lions to obey Ba            | rkn | ausen s criteria  |
|      | a) 43                                              | b) 4                                         | c)    | 10                          | d)  | 29                |
|      |                                                    |                                              |       |                             |     |                   |
|      |                                                    |                                              |       |                             |     |                   |



| Seat |  |
|------|--|
| No.  |  |

# S.E. (Part – II) (Biomedical Engg.) (Old CGPA) Examination, 2018 ELECTRONIC CIRCUITS ANALYSIS AND DESIGN – II


Day and Date: Thursday, 24-5-2018 Marks: 56

Time: 10.00 a.m. to 1.00 p.m.

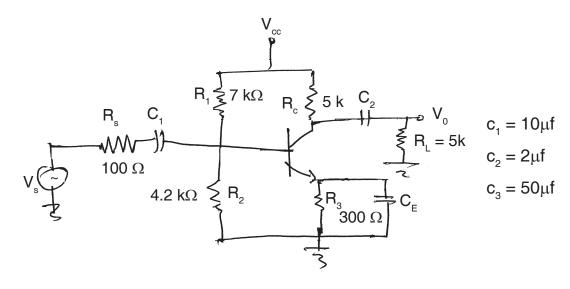
### SECTION - I

### 2. Attempt any four questions:

- 1) With the help of diagram explain working of BJT Darlington pair circuit and mention its advantages.
- 2) Explain working and analyze class B power amplifier.
- 3) Calculate the DC bias voltages and currents in the following circuits.



- 4) Draw and explain working of RC coupled oscillator with its frequency response.
- 5) Compare between class B amplifier with class C amplifier.




3. Attempt any two questions:

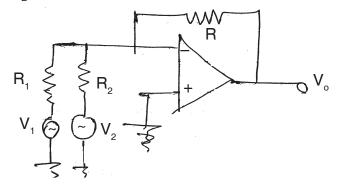
 $(6 \times 2 = 12)$ 

1) For the common emitter BJT amplifier calculate the values of f<sub>L</sub> and f<sub>H</sub> and midband voltage gain amid. Assume following parameter.

$$\beta$$
 = 80, g  $_{m}$  = 50  $\mu A/V,~r_{_{\pi}}$  = 1.3 kΩ,  $C_{_{\pi}}$  = 15 pf  $~c_{_{\mu}}$  = 1pf.



- 2) Compare different types at power amplifier based on following factors :
  - a) Conduction angle
  - b) Position of Q point
  - c) Efficiency
  - d) Distortion.
- 3) Describe the effect of coupling, bypass and load capacitors on low frequency response of BJT.


SECTION - II

4. Attempt any four questions:

- 1) Define and differentiate between linear amplifier and error amplifier.
- 2) List ideal characteristics of op-amp.



- 3) Draw the circuit for basic differentiator using op-amp and find the expression for the output voltage.
- 4) Find the output voltage for the circuit shown if  $R_f=10k\Omega,\ R_1=2k\Omega,\ R_2=5k\Omega.$



5) Differentiate between first order and second order low pass butterworth filter.

### 5. Attempt any 2 questions :

- 1) Design an instrumentation amplifier of gain 1000 for ECG recording machine.
- 2) With the help of circuit diagrams and waveforms explain application of op-amp as zero crossing detector.
- 3) Write a short note on:
  - a) Op-amp as Schmitt trigger working and application.
  - b) Definition of CMRR, PSRR, Shield drive.

### **SLR-TC - 449**

| Seat | 0.1 |   |
|------|-----|---|
| No.  | Set | 5 |

# S.E. (Part – II) (Biomedical Engg.) (Old CGPA) Examination, 2018 ELECTRONIC CIRCUITS ANALYSIS AND DESIGN – II

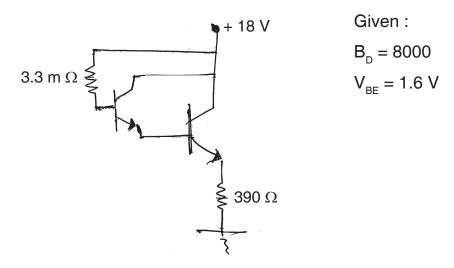
| -       | nd Date : Thursday<br>10.00 a.m. to 1.00        |                                                                             |                                                                                                               | Tota                               | al Marks : 70        |
|---------|-------------------------------------------------|-----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|------------------------------------|----------------------|
|         | 2)                                              | <b>30 minutes</b> in Ar<br>carries <b>one</b> mark.<br><b>Answer MCQ/Ob</b> | pulsory. It shounswer Book Page<br>jective type ques<br>t to mention, Q.P.                                    | No. <b>3. Each</b><br>stions on Pa | n question age No. 3 |
|         |                                                 | MCQ/Objective                                                               | Type Questions                                                                                                |                                    |                      |
| Duratio | on: 30 Minutes                                  | •                                                                           |                                                                                                               |                                    | Marks: 14            |
| 1. Ch   | oose the correct a                              | answer:                                                                     |                                                                                                               |                                    | (1×14=14)            |
| ·       | configuration. a) non-inverting c) open loop    | ·                                                                           | <ul><li>pass filter circuits</li><li>b) comparator</li><li>d) inverting</li><li>equency multiplier.</li></ul> | . ,                                |                      |
| ۷_      |                                                 |                                                                             | c) Class C                                                                                                    |                                    | AB                   |
| 3)      | in the form of pha<br>a) Adder<br>c) Integrator |                                                                             | mplifier circuit exhib<br>b) Subtractor<br>d) Differentiator                                                  |                                    | voltage              |
| 4)      |                                                 | ered to be                                                                  | ial to the difference type of amplification d) operational                                                    |                                    | e input              |
| 5)      | •                                               | a transformer co<br>ut of V(P) = 10 V<br>b) 33.3%                           | upled class A amp                                                                                             | olifier for a s                    |                      |
| 6)      | _                                               | _                                                                           | connection is<br>c) $\beta_1/\beta_2$                                                                         |                                    |                      |

| 7)  | configuration a) Fixed bias c) Emitter follower |                                 | t output impedance. b) Voltage divider d) Emitter-collecter                        |                              |  |
|-----|-------------------------------------------------|---------------------------------|------------------------------------------------------------------------------------|------------------------------|--|
| 8)  | Typical value of cu<br>a) > 1<br>c) undefined   |                                 | •                                                                                  | 50                           |  |
| 9)  | Amplifier gain for R should be minimum a) 43    |                                 | illations to obey Ba                                                               | rkhausen's criteria<br>d) 29 |  |
| 10) | componen                                        | t is used in Hartle             | ,                                                                                  | ck system.                   |  |
| 11) | The co<br>a) fixed bias<br>c) emitter follower  | nfiguration is frequ            | uently used for imp<br>b) voltage divider<br>d) collector feedba                   | bias                         |  |
| 12) | type of of the cycle. a) Class A c) Class C     | power amplifier is              | <ul><li>biased for operation</li><li>b) Class B or AB</li><li>d) Class D</li></ul> | on at less than 180°         |  |
| 13) | In class B operatio active the maximur a) 0.5   |                                 | d by the output trar                                                               | nsistor?                     |  |
| 14) | In an unbiased emimodel. a) V <sub>e</sub>      | tter bias configurable) $\beta$ | ation ${\sf h}_{\sf ie}$ replaces                                                  | d) $I_b$                     |  |
|     |                                                 |                                 |                                                                                    |                              |  |



| Seat |  |
|------|--|
| No.  |  |

# S.E. (Part – II) (Biomedical Engg.) (Old CGPA) Examination, 2018 ELECTRONIC CIRCUITS ANALYSIS AND DESIGN – II


Day and Date: Thursday, 24-5-2018 Marks: 56

Time: 10.00 a.m. to 1.00 p.m.

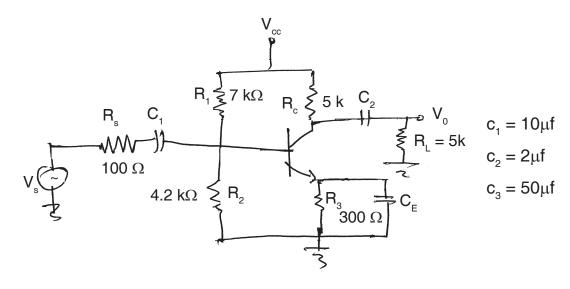
### SECTION - I

### 2. Attempt any four questions:

- 1) With the help of diagram explain working of BJT Darlington pair circuit and mention its advantages.
- 2) Explain working and analyze class B power amplifier.
- 3) Calculate the DC bias voltages and currents in the following circuits.



- 4) Draw and explain working of RC coupled oscillator with its frequency response.
- 5) Compare between class B amplifier with class C amplifier.




3. Attempt any two questions:

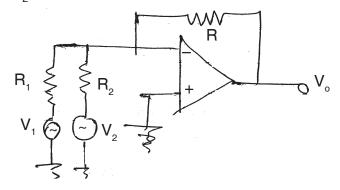
 $(6 \times 2 = 12)$ 

1) For the common emitter BJT amplifier calculate the values of f<sub>L</sub> and f<sub>H</sub> and midband voltage gain amid. Assume following parameter.

$$\beta$$
 = 80, g  $_{m}$  = 50  $\mu A/V,~r_{_{\pi}}$  = 1.3 kΩ,  $C_{_{\pi}}$  = 15 pf  $~c_{_{\mu}}$  = 1pf.



- 2) Compare different types at power amplifier based on following factors :
  - a) Conduction angle
  - b) Position of Q point
  - c) Efficiency
  - d) Distortion.
- 3) Describe the effect of coupling, bypass and load capacitors on low frequency response of BJT.


SECTION - II

4. Attempt any four questions:

- 1) Define and differentiate between linear amplifier and error amplifier.
- 2) List ideal characteristics of op-amp.



- 3) Draw the circuit for basic differentiator using op-amp and find the expression for the output voltage.
- 4) Find the output voltage for the circuit shown if  $R_f=10k\Omega,\ R_1=2k\Omega,\ R_2=5k\Omega.$



5) Differentiate between first order and second order low pass butterworth filter.

### 5. Attempt any 2 questions:

- 1) Design an instrumentation amplifier of gain 1000 for ECG recording machine.
- 2) With the help of circuit diagrams and waveforms explain application of op-amp as zero crossing detector.
- 3) Write a short note on:
  - a) Op-amp as Schmitt trigger working and application.
  - b) Definition of CMRR, PSRR, Shield drive.



| Seat |     |   |
|------|-----|---|
| No.  | Set | P |

# T.E. (Biomedical Engg.) (Part – I) (CGPA) Examination, 2018 BIOMEDICAL INSTRUMENTATION – I

| Day and Date. Thursday, 3-3-2016 Total Marks. 7 | Day and Date: | Thursday, 3-5-2018 | Total Marks: 7 |
|-------------------------------------------------|---------------|--------------------|----------------|
|-------------------------------------------------|---------------|--------------------|----------------|

Time: 10.00 a.m. to 1.00 p.m.

- Instructions: 1) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book Page No. 3. Each question carries one mark.
  - 2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

|         | 3) F                                                              | -                  | t indicate full mari<br>ata <b>wherever</b> requ         |                |            |
|---------|-------------------------------------------------------------------|--------------------|----------------------------------------------------------|----------------|------------|
| Duratio | on : 30 Minutes                                                   | MCQ/Objective T    | ype Questions                                            |                | Marks : 14 |
| 1. Ch   | oose the correct ar                                               | iswer:             |                                                          |                | (14×1=14)  |
|         | A<br>in efficient manner<br>a) flame photo me<br>c) ELISA         | than photometers   | <b>6.</b>                                                |                | liation    |
| 2)      | Pulse oximetry is busing 2 wavelengt a) collection c) saturation  |                    | ,                                                        |                | nations    |
| 3)      | Doppler shift is a na vessel. a) velocity c) viscosity            | on invasive techn  | ique to measure b b) acceleration d) volume              | olood          | in         |
| 4)      | The presence of intransducer.  a) photoelectric c) photo emissive | ·                  | ipheral artery is de<br>b) photovoltaic<br>d) photodiode | etected by a _ |            |
| 5)      | The partial pressu exchange between a) WBC                        | n the lungs and th |                                                          |                |            |
|         | •                                                                 | •                  | •                                                        | •              | P.T.O.     |

| 6)  | conduction is the transrand middle wear to the internal ear.              | nis   | sion of sound t          | hrou  | ugh the external |
|-----|---------------------------------------------------------------------------|-------|--------------------------|-------|------------------|
|     | a) bone b) air                                                            | c)    | muscle                   | d)    | hearing          |
| 7)  | A pure tone audiometer consist of                                         | an    |                          |       | for having a     |
|     | precise control on the frequency of oscillations.                         |       |                          |       |                  |
|     | a) amplifier                                                              | ,     | filter                   |       |                  |
|     | c) oscillator                                                             | ,     | audio amplifie           |       |                  |
| 8)  | The provides a positive for                                               | orce  | e for transportir        | ng re | spiratory gases  |
|     | into an apneic patient.                                                   | h)    | blood goe and            | محريا | A.F.             |
|     | <ul><li>a) spirometer</li><li>c) oxygenators</li></ul>                    | -     | blood gas ana ventilator | iiyZe | ;1               |
| 0)  | The main function of a ventilator is to                                   | ,     |                          | n     | nannar as clasa  |
| 9)  | as natural respiration.                                                   | ) VE  |                          | ıaıı  | namer as close   |
|     | a) heart                                                                  | b)    | thoracic cavity          | ,     |                  |
|     | c) lungs                                                                  | ,     | cavity                   |       |                  |
| 10) | ) White noise is a noise containing all frequencies in audible spectrum a |       |                          |       | ole spectrum at  |
|     | a) different                                                              | h)    | same                     |       |                  |
|     | c) equal                                                                  | ,     | approximate              |       |                  |
| 11) | are optical systems that                                                  | -     |                          | sola  | tion of spectral |
| ,   | energy than optical filters.                                              |       |                          |       | or opconion      |
|     | a) Lens                                                                   | b)    | Monochromat              | ors   |                  |
|     | c) Gratings                                                               | d)    | Collimators              |       |                  |
| 12) | A colorimetric determination measurement nm.                              | ure   | energetic spe            | ctru  | m ranges from    |
|     | a) 400 – 700                                                              | b)    | 1000 – 2300              |       |                  |
|     | c) 500 – 750                                                              | d)    | 250 – 550                |       |                  |
| 13) | A normal Ph of the extracellular fluid                                    | d lie | es in the range          | of _  |                  |
|     | a) 7 – 9                                                                  | b)    | 7.5 - 8.5                |       |                  |
|     | c) 6 – 7.5                                                                | d)    | 7.35 – 7.45              |       |                  |
| 14) | The glass electrode exhibits a range of 100 – 1000 M Ohm.                 |       | electric                 | cal r | esistance in the |
|     | a) high                                                                   | b)    | low                      |       |                  |
|     | c) light                                                                  | d)    | moderate                 |       |                  |
|     |                                                                           |       |                          |       |                  |



## T.E. (Biomedical Engg.) (Part – I) (CGPA) Examination, 2018 BIOMEDICAL INSTRUMENTATION – I

Day and Date: Thursday, 3-5-2018 Marks: 56

Time: 10.00 a.m. to 1.00 p.m.

**Instructions**: 1) Figures to the **right** indicate **full** marks.

2) Assume suitable data wherever required.

### SECTION - I

### 2. Attempt any 4 questions:

 $(4 \times 4 = 16)$ 

- 1) State and explain electrophoresis process.
- 2) Explain schematic diagram and working of colorimeter.
- 3) Draw and explain working of any one type of blood cell counter.
- 4) Explain working of pH meter. Mention its any 2 applications.
- 5) Explain the working of ELISA reader machine. State its any 2 applications.

### 3. Attempt any 2 questions:

 $(6 \times 2 = 12)$ 

- 1) Explain the working of complete blood gas analyzer.
- 2) Draw and explain working of electromagnetic blood flow meter.
- 3) Explain working of impedance plethysmography with necessary diagram.

#### SECTION - II

### 4. Attempt any 4 questions:

- 1) Explain the principle of pulse oximetry.
- 2) Define various lung volume and capacities with necessary diagram.



- 3) Explain working pCo2 measurement technique with necessary diagram.
- 4) List and explain various modes of ventilator.
- 5) Explain working of various types of oxygenators.
- 5. Attempt any 2 questions:

- 1) Draw and explain working of anesthesia machine in short.
- 2) Explain working of evoked response audiometry.
- 3) Explain working of pulmonary function analyzer.



| Seat |     |   |
|------|-----|---|
| No.  | Set | Q |
|      | -   | 1 |

### T.E. (Biomedical Engg.) (Part – I) (CGPA) Examination, 2018 BIOMEDICAL INSTRUMENTATION - I

|                                                                                                                                                                                                                                                                                      | -1                                                                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
| Day and Date: Thursday, 3-5-2018<br>Time: 10.00 a.m. to 1.00 p.m.                                                                                                                                                                                                                    | Total Marks: 70                                                      |
| Instructions: 1) Q. No. 1 is compulsory. It should 30 minutes in Answer Book Page No carries one mark.  2) Answer MCQ/Objective type quest 3 only. Don't forget to mention, Quest Top of Page.  3) Figures to the right indicate full many 4) Assume suitable data wherever request. | No. 3. Each question  stions on Page No.  .P. Set (P/Q/R/S) on  rks. |
| MCQ/Objective Type Questions  Duration: 30 Minutes                                                                                                                                                                                                                                   | Marks : 14                                                           |
|                                                                                                                                                                                                                                                                                      |                                                                      |
| 1. Choose the correct answer:                                                                                                                                                                                                                                                        | (14×1=14)                                                            |
| <ul> <li>1) The provides a positive force for transport gases into an apneic patient.</li> <li>a) spirometer</li> <li>b) blood gas an</li> <li>c) oxygenators</li> <li>d) ventilator</li> </ul>                                                                                      |                                                                      |
| <ul> <li>2) The main function of a ventilator is to ventilate</li> <li>as natural respiration.</li> <li>a) heart</li> <li>b) thoracic cavit</li> <li>c) lungs</li> <li>d) cavity</li> </ul>                                                                                          |                                                                      |
| 3) White noise is a noise containing all frequencies in intensities.  a) different b) same                                                                                                                                                                                           | audible spectrum at                                                  |
| c) equal d) approximate                                                                                                                                                                                                                                                              |                                                                      |

4) \_\_\_\_\_ are optical systems that provide better isolation of spectral energy than optical filters. b) Monochromators a) Lens

c) Gratings

- d) Collimators
- 5) A colorimetric determination measure energetic spectrum ranges from \_\_\_\_\_ nm.
  - a) 400 700

b) 1000 – 2300

c) 500 - 750

d) 250 – 550



| 6)  | A normal Ph of the                                           | extracellular fluid  | d lies     | in the range               | of _  |                  |
|-----|--------------------------------------------------------------|----------------------|------------|----------------------------|-------|------------------|
|     | a) 7 – 9                                                     |                      | b) 7       | 7.5 – 8.5                  |       |                  |
|     | c) $6 - 7.5$                                                 |                      | d) 7       | 7.35 – 7.45                |       |                  |
| 7)  | The glass electrod                                           | e exhibits a         |            | electric                   | al re | esistance in the |
|     | range of 100 – 100                                           | 00 M Ohm.            |            |                            |       |                  |
|     | a) high                                                      |                      | b) l       |                            |       |                  |
|     | c) light                                                     |                      | d) r       | noderate                   |       |                  |
| •   | Α                                                            |                      |            | olates monoc               | hro   | matic radiation  |
|     | in efficient manner                                          | •                    |            |                            |       |                  |
|     | a) flame photo me                                            | ter                  | ,          | colorimeter                |       |                  |
| ٥)  | c) ELISA                                                     |                      |            | spectrophoton              |       |                  |
| 9)  | Pulse oximetry is b using 2 wavelengtl                       |                      | erial      | oxygen                     |       | determinations   |
|     | a) collection                                                | 10.                  | b) c       | deposition                 |       |                  |
|     | c) saturation                                                |                      | •          | eduction                   |       |                  |
| 10) | Doppler shift is a n                                         | on invasive techni   | ique 1     | to measure bl              | ood   | in               |
| ,   | a vessel.                                                    |                      | •          |                            |       |                  |
|     | a) velocity                                                  |                      | b) a       | acceleration               |       |                  |
|     | c) viscosity                                                 |                      | d) v       | olume/                     |       |                  |
| 11) | The presence of in                                           | dicator in the peri  | pher       | al artery is de            | tect  | ed by a          |
|     | transducer.                                                  |                      | h) r       | shotovoltojo               |       |                  |
|     | <ul><li>a) photoelectric</li><li>c) photo emissive</li></ul> |                      | , .        | ohotovoltaic<br>ohotodiode |       |                  |
| 12) | The partial pressur                                          | re in the            | <i>,</i> . |                            | ovt   | ent of oxygen    |
| 12) | exchange between                                             |                      |            |                            | CAL   | ent of oxygen    |
|     | a) WBC                                                       | b) RBC               |            |                            | d)    | Plasma           |
| 13) | condu                                                        | uction is the transr | nissi      | on of sound t              | hrou  | igh the external |
| •   | and middle wear to                                           | the internal ear.    |            |                            |       |                  |
|     | a) bone                                                      | b) air               | c) r       | nuscle                     | d)    | hearing          |
| 14) | A pure tone audio                                            | meter consist of     | an _       |                            |       | for having a     |
|     | precise control on                                           | the frequency of c   |            |                            |       |                  |
|     | a) amplifier                                                 |                      | b) f       |                            |       |                  |
|     | c) oscillator                                                |                      | a) a       | audio amplifie             | r     |                  |
|     |                                                              |                      |            |                            |       |                  |
|     |                                                              |                      |            |                            |       |                  |



## T.E. (Biomedical Engg.) (Part – I) (CGPA) Examination, 2018 BIOMEDICAL INSTRUMENTATION – I

Day and Date: Thursday, 3-5-2018 Marks: 56

Time: 10.00 a.m. to 1.00 p.m.

**Instructions**: 1) Figures to the **right** indicate **full** marks.

2) Assume suitable data wherever required.

### SECTION - I

### 2. Attempt any 4 questions:

 $(4 \times 4 = 16)$ 

- 1) State and explain electrophoresis process.
- 2) Explain schematic diagram and working of colorimeter.
- 3) Draw and explain working of any one type of blood cell counter.
- 4) Explain working of pH meter. Mention its any 2 applications.
- 5) Explain the working of ELISA reader machine. State its any 2 applications.

### 3. Attempt any 2 questions:

 $(6 \times 2 = 12)$ 

- 1) Explain the working of complete blood gas analyzer.
- 2) Draw and explain working of electromagnetic blood flow meter.
- 3) Explain working of impedance plethysmography with necessary diagram.

#### SECTION - II

### 4. Attempt any 4 questions:

- 1) Explain the principle of pulse oximetry.
- 2) Define various lung volume and capacities with necessary diagram.



- 3) Explain working pCo2 measurement technique with necessary diagram.
- 4) List and explain various modes of ventilator.
- 5) Explain working of various types of oxygenators.
- 5. Attempt any 2 questions:

- 1) Draw and explain working of anesthesia machine in short.
- 2) Explain working of evoked response audiometry.
- 3) Explain working of pulmonary function analyzer.



| Seat |     |   |
|------|-----|---|
| No.  | Set | R |
|      |     |   |

### T.E. (Biomedical Engg.) (Part – I) (CGPA) Examination, 2018 **BIOMEDICAL INSTRUMENTATION - I**

Day and Date: Thursday, 3-5-2018 Total Marks: 70

Time: 10.00 a.m. to 1.00 p.m.

- Instructions: 1) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book Page No. 3. Each guestion carries one mark.
  - 2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.
  - 3) Figures to the right indicate full marks.
  - 4) Assume suitable data wherever required.

|          |                                                            | MCQ/Objectiv          | ve Type Question                               | S                                    |
|----------|------------------------------------------------------------|-----------------------|------------------------------------------------|--------------------------------------|
| Duration | on : 30 Minutes                                            |                       | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,        | Marks: 14                            |
| 1. Cl    | noose the correc                                           | ot answer :           |                                                | (14×1=14)                            |
| 1)       | -                                                          | veen the lungs and    |                                                | the extent of oxygen d) Plasma       |
| 2)       |                                                            | ear to the internal e |                                                | nd through the external  d) hearing  |
| 3)       | ) A pure tone a                                            | •                     | t of an<br>of oscillations.                    | for having a                         |
| 4)       | into an apneic a) spirometer c) oxygenator                 | patient.              |                                                | orting respiratory gases<br>analyzer |
| 5)       | ) The main func<br>as natural resp<br>a) heart<br>c) lungs |                       | is to ventilate<br>b) thoracic ca<br>d) cavity | in a manner as close                 |

| 6)  | White noise is a noise containing all frequencies in audible spectrum at intensities.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                        |  |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|--|
|     | a) different                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | b) same                                |  |
|     | c) equal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | d) approximate                         |  |
| 7)  | The state of the s | t provide better isolation of spectral |  |
|     | energy than optical filters.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                        |  |
|     | a) Lens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | b) Monochromators                      |  |
|     | c) Gratings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | d) Collimators                         |  |
| 8)  | A colorimetric determination measurement nm.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ure energetic spectrum ranges from     |  |
|     | a) 400 - 700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | b) 1000 – 2300                         |  |
|     | c) 500 – 750                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | d) 250 – 550                           |  |
| 9)  | A normal Ph of the extracellular fluid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | d lies in the range of                 |  |
|     | a) 7 – 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | b) 7.5 – 8.5                           |  |
|     | c) 6 – 7.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | d) 7.35 – 7.45                         |  |
| 10) | The glass electrode exhibits a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | electrical resistance in the           |  |
|     | range of 100 – 1000 M Ohm.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                        |  |
|     | a) high                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | b) low                                 |  |
|     | c) light                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | d) moderate                            |  |
| 11) | A is an instrument t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | hat isolates monochromatic             |  |
|     | radiation in efficient manner than pho                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | otometers.                             |  |
|     | a) flame photo meter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | b) colorimeter                         |  |
|     | c) ELISA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | d) spectrophotometer                   |  |
| 12) | Pulse oximetry is based upon the arteusing 2 wavelengths.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | erial oxygen determinations            |  |
|     | a) collection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | b) deposition                          |  |
|     | c) saturation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | d) reduction                           |  |
| 13) | Doppler shift is a non invasive technia vessel.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | que to measure blood in                |  |
|     | a) velocity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | b) acceleration                        |  |
|     | c) viscosity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | d) volume                              |  |
| 14) | The presence of indicator in the peri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | pheral artery is detected by a         |  |
|     | transducer.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                        |  |
|     | a) photoelectric                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | b) photovoltaic                        |  |
|     | c) photo emissive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | d) photodiode                          |  |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |  |



## T.E. (Biomedical Engg.) (Part – I) (CGPA) Examination, 2018 BIOMEDICAL INSTRUMENTATION – I

Day and Date: Thursday, 3-5-2018 Marks: 56

Time: 10.00 a.m. to 1.00 p.m.

**Instructions**: 1) Figures to the **right** indicate **full** marks.

2) Assume suitable data wherever required.

### SECTION - I

### 2. Attempt any 4 questions:

 $(4 \times 4 = 16)$ 

- 1) State and explain electrophoresis process.
- 2) Explain schematic diagram and working of colorimeter.
- 3) Draw and explain working of any one type of blood cell counter.
- 4) Explain working of pH meter. Mention its any 2 applications.
- 5) Explain the working of ELISA reader machine. State its any 2 applications.

### 3. Attempt any 2 questions:

 $(6 \times 2 = 12)$ 

- 1) Explain the working of complete blood gas analyzer.
- 2) Draw and explain working of electromagnetic blood flow meter.
- 3) Explain working of impedance plethysmography with necessary diagram.

#### SECTION - II

### 4. Attempt any 4 questions:

- 1) Explain the principle of pulse oximetry.
- 2) Define various lung volume and capacities with necessary diagram.



- 3) Explain working pCo2 measurement technique with necessary diagram.
- 4) List and explain various modes of ventilator.
- 5) Explain working of various types of oxygenators.
- 5. Attempt any 2 questions:

- 1) Draw and explain working of anesthesia machine in short.
- 2) Explain working of evoked response audiometry.
- 3) Explain working of pulmonary function analyzer.

a) high

c) light

## **SLR-TC - 450**

| Seat |     |   |
|------|-----|---|
| No.  | Set | S |
|      |     |   |

# T.E. (Biomedical Engg.) (Part – I) (CGPA) Examination, 2018 BIOMEDICAL INSTRUMENTATION – I

| -       | d Date: Thui<br>10.00 a.m. to                 | rsday, 3-5-2018<br>1.00 p.m.                                                                                | ٦                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Γotal Marks: 70        |
|---------|-----------------------------------------------|-------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
|         | Instructions                                  | 30 minutes in Anscarries one mark. 2) Answer MCQ/Obj 3 only. Don't forg Top of Page. 3) Figures to the righ | oulsory. It should be solutions of the solution of the solutio | ch question n Page No. |
| Duratio | on : 30 Minute                                | MCQ/Objective                                                                                               | Type Questions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Marks : 14             |
| 1. Ch   | oose the corr                                 | ect answer :                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (14×1=14)              |
| 1)      |                                               | is a noise containing a intensities.                                                                        | all frequencies in audible                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | spectrum at            |
|         | a) different                                  |                                                                                                             | b) same                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        |
|         | c) equal                                      |                                                                                                             | d) approximate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                        |
| 2)      |                                               |                                                                                                             | at provide better isolation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | of spectral            |
|         |                                               | optical filters.                                                                                            | 1 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        |
|         | <ul><li>a) Lens</li><li>c) Gratings</li></ul> |                                                                                                             | <ul><li>b) Monochromators</li><li>d) Collimators</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        |
| 3)      | ,                                             | ic determination meas                                                                                       | ure energetic spectrum r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | anges from             |
|         | a) 400 - 700<br>c) 500 - 750                  |                                                                                                             | b) 1000 – 2300<br>d) 250 – 550                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                        |
| 4)      | A normal Ph                                   | of the extracellular flui                                                                                   | d lies in the range of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                        |
|         | a) 7 – 9                                      |                                                                                                             | b) 7.5 – 8.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                        |
|         | c) $6 - 7.5$                                  |                                                                                                             | d) 7.35 – 7.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                        |
| 5)      |                                               | ectrode exhibits a<br>– 1000 M Ohm.                                                                         | electrical resis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | tance in the           |

b) low

d) moderate



|     | A<br>in efficient manner                                     |                     |          | isolates monoc            | chro  | matic radiation  |
|-----|--------------------------------------------------------------|---------------------|----------|---------------------------|-------|------------------|
|     | <ul><li>a) flame photo me</li><li>c) ELISA</li></ul>         | ter                 | b)       | colorimeter spectrophotor | nete  | r                |
| 7)  | Pulse oximetry is b using 2 wavelength                       |                     |          |                           |       | _determinations  |
|     | <ul><li>a) collection</li><li>c) saturation</li></ul>        |                     | -        | deposition reduction      |       |                  |
| 8)  | Doppler shift is a n a vessel.                               | on invasive techni  | que      | e to measure b            | lood  | in               |
|     | <ul><li>a) velocity</li><li>c) viscosity</li></ul>           |                     | ,        | acceleration volume       |       |                  |
| 9)  | The presence of intransducer.                                |                     |          | -                         | tect  | ed by a          |
|     | <ul><li>a) photoelectric</li><li>c) photo emissive</li></ul> |                     | b)<br>d) | photovoltaic photodiode   |       |                  |
| 10) | The partial pressur exchange between a) WBC                  | n the lungs and the | e bl     | ood.                      |       |                  |
| 11) | condu                                                        | •                   | •        |                           | •     |                  |
| ,   | and middle wear to                                           | the internal ear.   |          |                           |       |                  |
|     | a) bone                                                      |                     |          |                           |       |                  |
| 12) | A pure tone audic precise control on                         |                     |          |                           |       | for having a     |
|     | a) amplifier                                                 | the frequency of c  |          | filter                    |       |                  |
|     | c) oscillator                                                |                     | ,        | audio amplifie            | r     |                  |
| 13) | The proints an apneic pati                                   |                     | orc      | e for transportir         | ng re | espiratory gases |
|     | <ul><li>a) spirometer</li><li>c) oxygenators</li></ul>       |                     | •        | blood gas ana ventilator  | lyze  | er               |
| 14) | The main function as natural respirati                       |                     | ve       | ntilate ir                | n a n | nanner as close  |
|     | a) heart                                                     |                     | ,        | thoracic cavity           | /     |                  |
|     | c) lungs                                                     |                     | d)       | cavity                    |       |                  |
|     |                                                              |                     |          |                           |       |                  |



## T.E. (Biomedical Engg.) (Part – I) (CGPA) Examination, 2018 BIOMEDICAL INSTRUMENTATION – I

Day and Date: Thursday, 3-5-2018 Marks: 56

Time: 10.00 a.m. to 1.00 p.m.

**Instructions**: 1) Figures to the **right** indicate **full** marks.

2) Assume suitable data wherever required.

### SECTION - I

### 2. Attempt any 4 questions:

 $(4 \times 4 = 16)$ 

- 1) State and explain electrophoresis process.
- 2) Explain schematic diagram and working of colorimeter.
- 3) Draw and explain working of any one type of blood cell counter.
- 4) Explain working of pH meter. Mention its any 2 applications.
- 5) Explain the working of ELISA reader machine. State its any 2 applications.

### 3. Attempt any 2 questions:

 $(6 \times 2 = 12)$ 

- 1) Explain the working of complete blood gas analyzer.
- 2) Draw and explain working of electromagnetic blood flow meter.
- 3) Explain working of impedance plethysmography with necessary diagram.

#### SECTION - II

## 4. Attempt any 4 questions:

- 1) Explain the principle of pulse oximetry.
- 2) Define various lung volume and capacities with necessary diagram.



- 3) Explain working pCo2 measurement technique with necessary diagram.
- 4) List and explain various modes of ventilator.
- 5) Explain working of various types of oxygenators.
- 5. Attempt any 2 questions :

- 1) Draw and explain working of anesthesia machine in short.
- 2) Explain working of evoked response audiometry.
- 3) Explain working of pulmonary function analyzer.

| <br> |
|------|

| Seat | 0-4 | <b>D</b> |
|------|-----|----------|
| No.  | Set | P        |

# T.E. (Biomedical Engg.) (Part – I) (CGPA) Examination, 2018 BIOLOGICAL MODELING AND SIMULATION

|         | BIOLOGICAL MODELIN                                                                                                                                            | IG AND SIMULATION                                                                                                                                  |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| -       | d Date : Friday, 4-5-2018<br>10.00 a.m. to 1.00 p.m.                                                                                                          | Max. Marks : 70                                                                                                                                    |
|         | minutes in Answe<br>carries one mark.<br>2) Answer MCQ/Obje                                                                                                   | Isory. It should be solved in first 30 er Book Page No. 3. Each question ective type questions on Page No. 3 to mention, Q.P. Set (P/Q/R/S) on Top |
|         | MCQ/Objective T                                                                                                                                               | ype Questions                                                                                                                                      |
| Duratio | n : 30 Minutes                                                                                                                                                | Marks: 14                                                                                                                                          |
|         | oose the correct answer:  The fibers in muscle spindle a) cannot contract b) are intervated by gamma fiber c) maintain tension on spindle recept d) b) and c) | (1×14=14)<br>otor                                                                                                                                  |
| 2)      | An active transport occurs  a) into cell c) both into and out of                                                                                              | b) out of cell d) across the cell                                                                                                                  |
| 3)      | Goldman equation is also called as a) constant field c) constant permeability                                                                                 | equation. b) constant volume d) constant coefficient                                                                                               |
| 4)      | Diffusion of ions always takes place<br>a) higher to lower<br>c) higher to stable                                                                             | from toconcentration. b) lower to higher d) stable to lower                                                                                        |
| 5)      | a) mV b) mA                                                                                                                                                   |                                                                                                                                                    |
| 6)      | potential.  a) K <sup>+</sup> gradient c) Na <sup>+</sup> permeability                                                                                        | tor in setting the resting membrane  b) Cl- gradient d) Active transport                                                                           |

|    | •                                                             |                                                                                                                                                                                                                              | h)                                                                                                                                                                                               | lene curvature                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | anc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | l focal length                                                                                                                                                                                                                                                                                                                                          |
|----|---------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ,  |                                                               |                                                                                                                                                                                                                              |                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | anc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | i local length                                                                                                                                                                                                                                                                                                                                          |
| a) | Vasodilation                                                  |                                                                                                                                                                                                                              | b)                                                                                                                                                                                               | Vasoconstriction                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ed by                                                                                                                                                                                                                                                                                                                                                   |
|    |                                                               | ontraction along w                                                                                                                                                                                                           | ith                                                                                                                                                                                              | increase rate of                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | he                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | at production is                                                                                                                                                                                                                                                                                                                                        |
| a) | shivering                                                     | b) non shivering                                                                                                                                                                                                             | c)                                                                                                                                                                                               | overlapping                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | d)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | osmogenesis                                                                                                                                                                                                                                                                                                                                             |
|    | equation d                                                    | efines cell membr                                                                                                                                                                                                            | ane                                                                                                                                                                                              | e current.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                         |
| a) | Nernst                                                        | b) Donnan                                                                                                                                                                                                                    | c)                                                                                                                                                                                               | Goldman                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | d)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Cable                                                                                                                                                                                                                                                                                                                                                   |
|    | occurs due                                                    | to lack of Dopam                                                                                                                                                                                                             | ine                                                                                                                                                                                              | <del>)</del> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                         |
| a) | Stretch reflex                                                | b) Shivering                                                                                                                                                                                                                 | c)                                                                                                                                                                                               | Parkinsons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | d)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Diffusion                                                                                                                                                                                                                                                                                                                                               |
|    | relationsh                                                    | nip defines relation                                                                                                                                                                                                         | n be                                                                                                                                                                                             | etween diffusion                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | d drift.                                                                                                                                                                                                                                                                                                                                                |
| a) | Ohm's                                                         | b) Faraday's                                                                                                                                                                                                                 | c)                                                                                                                                                                                               | Einstein's                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | d)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Donnan                                                                                                                                                                                                                                                                                                                                                  |
|    | •                                                             | •                                                                                                                                                                                                                            |                                                                                                                                                                                                  | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                         |
| a) | images                                                        | b) models                                                                                                                                                                                                                    | c)                                                                                                                                                                                               | simulations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | d)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | validations                                                                                                                                                                                                                                                                                                                                             |
|    | •                                                             |                                                                                                                                                                                                                              |                                                                                                                                                                                                  | active transpor                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                         |
|    | a) c) 'Re a) c) Inc ca a) | a) lens movement c) pupil 'Regional temperat a) Vasodilation c) Both a) and b) Increase muscle co called a) shivering equation d a) Nernst occurs due a) Stretch reflex relationsh a) Ohm's are simplifi a) images transport | c) pupil  'Regional temperature difference wit a) Vasodilation c) Both a) and b)  Increase muscle contraction along we called a) shivering b) non shivering ———————————————————————————————————— | a) lens movement b) c) pupil d) 'Regional temperature difference within a) Vasodilation b) c) Both a) and b) d) Increase muscle contraction along with called a) shivering b) non shivering c) equation defines cell membrane a) Nernst b) Donnan c) occurs due to lack of Dopamine a) Stretch reflex b) Shivering c) relationship defines relation be a) Ohm's b) Faraday's c) are simplified representation of a) images b) models c) transport induces conformatio a) simple diffusion b) | a) lens movement c) pupil d) retina  'Regional temperature difference within an animal is obta) Vasodilation c) Both a) and b) lncrease muscle contraction along with increase rate of called a) shivering b) non shivering c) overlapping equation defines cell membrane current. a) Nernst b) Donnan c) Goldman coccurs due to lack of Dopamine. a) Stretch reflex b) Shivering c) Parkinsons relationship defines relation between diffusion a) Ohm's b) Faraday's c) Einstein's are simplified representation of objects. a) images b) models c) simulations transport induces conformational change in presentation. | a) lens movement b) lens curvature and c) pupil d) retina  'Regional temperature difference within an animal is obtain a) Vasodilation b) Vasoconstriction c) Both a) and b) d) Vasocirculation  Increase muscle contraction along with increase rate of he called a) shivering b) non shivering c) overlapping d)  ——————————————————————————————————— |



| Seat |  |
|------|--|
| No.  |  |

## T.E. (Biomedical Engg.) (Part – I) (CGPA) Examination, 2018 BIOLOGICAL MODELING AND SIMULATION

Day and Date: Friday, 4-5-2018 Marks: 56

Time: 10.00 a.m. to 1.00 p.m.

### SECTION - I

### 2. Attempt any four questions :

 $(4 \times 4 = 16)$ 

- 1) Explain active transport mechanism with necessary diagram.
- 2) Explain Biophysic tools with related laws and expression.
- 3) Define and differentiate Nernst equation and Donnan's equation.
- 4) Define lumped parameter models and compartmental model with each of example.
- 5) Describe modeling of regulation of cardiac output and respiratory system.

### 3. Attempt any two questions:

 $(6 \times 2 = 12)$ 

- 1) Draw and explain electrical equivalent model of a biological membrane and mention its significance.
- 2) Write a short note on:
  - a) Goldman's equation and its significance
  - b) Cable equation and its significance
- 3) Derive and explain Hodgkin Huxley conductance equations with necessary figures.

### SECTION - II

### 4. Attempt any four questions:

- 1) Explain linearized model of immuno response with one example.
- 2) Describe validation and controller model for thermo regulatory model.
- 3) Explain symptoms and effects of Parkinson's syndrome.



- 4) Explain the role of spindle receptor and golgi tendon organ in modeling of neuro muscular system.
- 5) Describe model of drug delivery system with necessary figures.
- 5. Attempt **any two** questions:

- 1) Explain four types of eye movements and name the type of muscles responsible for eye movements.
- 2) Describe thermo regulatory plant model with necessary diagram.
- 3) Write a short note on:
  - a) Insulin Glucose feedback system.
  - b) Pharmacokinetics.

|--|

| Seat | 0-4 |   |
|------|-----|---|
| No.  | Set | Q |

# T.E. (Biomedical Engg.) (Part – I) (CGPA) Examination, 2018 BIOLOGICAL MODELING AND SIMULATION

|         | BIOLOGICAL MODELIN                                                           | IG AND SIMULATION                                                                                           |
|---------|------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| •       | nd Date : Friday, 4-5-2018<br>10.00 a.m. to 1.00 p.m.                        | Max. Marks: 70                                                                                              |
|         | minutes in Answe<br>carries one mark.<br>2) Answer MCQ/Obje                  | er Book Page No. 3. Each question ective type questions on Page No. 3 to mention, Q.P. Set (P/Q/R/S) on Top |
| Duratio | MCQ/Objective Ton: 30 Minutes                                                | ype Questions<br>Marks : 14                                                                                 |
| 1. Ch   | oose the correct answer :                                                    | (1×14=14)                                                                                                   |
| 1)      | 'Regional temperature difference wit<br>a) Vasodilation<br>c) Both a) and b) | chin an animal is obtained by b) Vasoconstriction d) Vasocirculation                                        |
| 2)      | called                                                                       | vith increase rate of heat production is                                                                    |
|         | <ul><li>a) shivering</li><li>c) overlapping</li></ul>                        | <ul><li>b) non shivering</li><li>d) osmogenesis</li></ul>                                                   |
| 3)      | a) Nernst b) Donnan                                                          | rane current.<br>c) Goldman d) Cable                                                                        |
| 4)      | occurs due to lack of Dopan a) Stretch reflex c) Parkinsons                  | nine.<br>b) Shivering<br>d) Diffusion                                                                       |
| 5)      | relationship defines relation a) Ohm's c) Einstein's                         | n between diffusion and drift.<br>b) Faraday's<br>d) Donnan                                                 |
| 6)      | are simplified representation a) images b) models                            | of objects. c) simulations d) validations                                                                   |
| 7)      | transport induces conformation a) simple diffusion c) faciliated diffusion   | ational change in protein. b) active transport d) ion driven active transport                               |

| SLR-T | C – 451                                                                                                                          | -2-                                                                       |    |
|-------|----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|----|
| 8)    | The fibers in muscle spindle a) cannot contract b) are intervated by gamma fiber c) maintain tension on spindle red d) b) and c) | ceptor                                                                    |    |
| 9)    | An active transport occurs <ul><li>a) into cell</li><li>c) both into and out of</li></ul>                                        | b) out of cell d) across the cell                                         |    |
| 10)   | Goldman equation is also called a a) constant field c) constant permeability                                                     | b) constant volume                                                        |    |
| 11)   | Diffusion of ions always takes place<br>a) higher to lower<br>c) higher to stable                                                | ce from toconcentration. b) lower to higher d) stable to lower            |    |
| 12)   | a) mV b) mA                                                                                                                      | from the Nernst equation. c) coulombs d) tons/sec.                        |    |
| 13)   | ,                                                                                                                                | factor in setting the resting membra  b) Cl- gradient d) Active transport | ne |
| 14)   | Ciliary muscles of eye controls the a) lens movement c) pupil                                                                    | •                                                                         |    |



| Seat |  |
|------|--|
| No.  |  |

## T.E. (Biomedical Engg.) (Part – I) (CGPA) Examination, 2018 BIOLOGICAL MODELING AND SIMULATION

Day and Date: Friday, 4-5-2018 Marks: 56

Time: 10.00 a.m. to 1.00 p.m.

### SECTION - I

### 2. Attempt any four questions :

 $(4 \times 4 = 16)$ 

- 1) Explain active transport mechanism with necessary diagram.
- 2) Explain Biophysic tools with related laws and expression.
- 3) Define and differentiate Nernst equation and Donnan's equation.
- 4) Define lumped parameter models and compartmental model with each of example.
- 5) Describe modeling of regulation of cardiac output and respiratory system.

### 3. Attempt any two questions:

 $(6 \times 2 = 12)$ 

- 1) Draw and explain electrical equivalent model of a biological membrane and mention its significance.
- 2) Write a short note on:
  - a) Goldman's equation and its significance
  - b) Cable equation and its significance
- 3) Derive and explain Hodgkin Huxley conductance equations with necessary figures.

### SECTION - II

### 4. Attempt any four questions:

- 1) Explain linearized model of immuno response with one example.
- 2) Describe validation and controller model for thermo regulatory model.
- 3) Explain symptoms and effects of Parkinson's syndrome.



- 4) Explain the role of spindle receptor and golgi tendon organ in modeling of neuro muscular system.
- 5) Describe model of drug delivery system with necessary figures.
- 5. Attempt **any two** questions:

- 1) Explain four types of eye movements and name the type of muscles responsible for eye movements.
- 2) Describe thermo regulatory plant model with necessary diagram.
- 3) Write a short note on:
  - a) Insulin Glucose feedback system.
  - b) Pharmacokinetics.

| Seat | 0.4 🗖 |
|------|-------|
| No.  | Set R |

# T.E. (Biomedical Engg.) (Part – I) (CGPA) Examination, 2018 BIOLOGICAL MODELING AND SIMULATION

|         | BIOLOGICAL MO                                                                           | ODELING AND SIMULATION                                                                                                                        |                     |
|---------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| -       | d Date : Friday, 4-5-2018<br>10.00 a.m. to 1.00 p.m.                                    | Ma                                                                                                                                            | ax. Marks : 70      |
|         | minutes in<br>carries one<br>2) Answer Me                                               | s compulsory. It should be solved in Answer Book Page No. 3. Each mark. CQ/Objective type questions on Fit forget to mention, Q.P. Set (P/Q/R | question Page No. 3 |
|         | MCQ/Obj                                                                                 | ective Type Questions                                                                                                                         |                     |
| Duratio | n : 30 Minutes                                                                          |                                                                                                                                               | Marks: 14           |
| 1. Ch   | oose the correct answer :                                                               |                                                                                                                                               | (1×14=14)           |
| 1)      |                                                                                         | oduct from the Nernst equation. c) coulombs d) tons/s                                                                                         | sec.                |
| 2)      | is the most imporpotential.  a) K <sup>+</sup> gradient c) Na <sup>+</sup> permeability | rtant factor in setting the resting m b) Cl- gradient d) Active transport                                                                     | embrane             |
| 3)      | Ciliary muscles of eye contro<br>a) lens movement<br>c) pupil                           | ols the b) lens curvature and focal d) retina                                                                                                 | length              |
| 4)      | 'Regional temperature difference a) Vasodilation c) Both a) and b)                      | rence within an animal is obtained by b) Vasoconstriction d) Vasocirculation                                                                  |                     |
| 5)      | called                                                                                  | along with increase rate of heat productions along with increase rate of heat productions along with increase rate of heat productions.       |                     |
| 6)      | equation defines cel                                                                    | Il membrane current. an c) Goldman d) Cable                                                                                                   | <del>)</del>        |
| 7)      | occurs due to lack of a) Stretch reflex c) Parkinsons                                   | ,                                                                                                                                             |                     |

| SLR-TO | C – 45                                                                                                                                | 1                                                 |   | -2-                      |    |                                            |     |              |
|--------|---------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|---|--------------------------|----|--------------------------------------------|-----|--------------|
| 8)     |                                                                                                                                       |                                                   |   |                          |    | tween diffusion                            |     |              |
| 0)     | •                                                                                                                                     |                                                   | • | -                        | •  | Einstein's                                 | u)  | Donnan       |
| 9)     |                                                                                                                                       | •                                                 |   | representation<br>models |    | objects.<br>simulations                    | d)  | validations  |
| 10)    |                                                                                                                                       | transport                                         |   |                          |    | nal change in pr<br>active transport       |     | in.          |
|        | -                                                                                                                                     | ciliated diffusi                                  |   |                          | ,  | ion driven activ                           |     | ansport      |
| 11)    | The fibers in muscle spindle a) cannot contract b) are intervated by gamma fiber c) maintain tension on spindle receptor d) b) and c) |                                                   |   |                          |    |                                            |     |              |
| 12)    | a) int                                                                                                                                | tive transport<br>o cell<br>th into and ou        |   |                          | ,  | out of cell<br>across the cell             |     |              |
| 13)    | a) co                                                                                                                                 | nstant field                                      |   |                          | b) | equation. constant volum constant coeffice |     | nt           |
| 14)    | a) hig                                                                                                                                | ion of ions al<br>gher to lower<br>gher to stable |   | s takes place            | b) | n to<br>lower to higher<br>stable to lower | _co | ncentration. |

Set R



| Seat |  |
|------|--|
| No.  |  |

## T.E. (Biomedical Engg.) (Part – I) (CGPA) Examination, 2018 BIOLOGICAL MODELING AND SIMULATION

Day and Date: Friday, 4-5-2018 Marks: 56

Time: 10.00 a.m. to 1.00 p.m.

### SECTION - I

### 2. Attempt any four questions :

 $(4 \times 4 = 16)$ 

- 1) Explain active transport mechanism with necessary diagram.
- 2) Explain Biophysic tools with related laws and expression.
- 3) Define and differentiate Nernst equation and Donnan's equation.
- 4) Define lumped parameter models and compartmental model with each of example.
- 5) Describe modeling of regulation of cardiac output and respiratory system.

### 3. Attempt any two questions:

 $(6 \times 2 = 12)$ 

- 1) Draw and explain electrical equivalent model of a biological membrane and mention its significance.
- 2) Write a short note on:
  - a) Goldman's equation and its significance
  - b) Cable equation and its significance
- 3) Derive and explain Hodgkin Huxley conductance equations with necessary figures.

### SECTION - II

### 4. Attempt any four questions:

- 1) Explain linearized model of immuno response with one example.
- 2) Describe validation and controller model for thermo regulatory model.
- 3) Explain symptoms and effects of Parkinson's syndrome.



- 4) Explain the role of spindle receptor and golgi tendon organ in modeling of neuro muscular system.
- 5) Describe model of drug delivery system with necessary figures.
- 5. Attempt **any two** questions:

- 1) Explain four types of eye movements and name the type of muscles responsible for eye movements.
- 2) Describe thermo regulatory plant model with necessary diagram.
- 3) Write a short note on:
  - a) Insulin Glucose feedback system.
  - b) Pharmacokinetics.

| Seat |  |
|------|--|
| No.  |  |

Set S

## T.E. (Biomedical Engg.) (Part – I) (CGPA) Examination, 2018 BIOLOGICAL MODELING AND SIMULATION

| Day and Date : Friday, 4-5-2018 | Max. Marks: 70 |
|---------------------------------|----------------|
|                                 |                |

Time: 10.00 a.m. to 1.00 p.m.

- Instructions: 1) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book Page No. 3. Each question carries one mark.
  - 2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

|         |                     | ı                                            | MCQ/Objec                  | tive Type | e Questions                                          |     |           |            |
|---------|---------------------|----------------------------------------------|----------------------------|-----------|------------------------------------------------------|-----|-----------|------------|
| Duratio | n : 30 M            |                                              | •                          | ,,        |                                                      |     |           | Marks : 14 |
| 1. Ch   | oose the            | correct an                                   | swer:                      |           |                                                      |     |           | (1×14=14)  |
| 1)      |                     | •                                            | efines cell r<br>b) Donnar |           | e current.<br>Goldman                                | d)  | Cable     |            |
| 2)      |                     | tch reflex                                   | e to lack of I             | b)        |                                                      |     |           |            |
| 3)      |                     |                                              | •                          |           | etween diffusio<br>Einstein's                        |     |           |            |
| 4)      |                     |                                              | ied represe<br>b) models   |           | objects.<br>simulations                              | d)  | validatio | ns         |
| 5)      | a) simp             | _ transport<br>ble diffusion<br>ated diffusi |                            | b)        | nal change in p<br>active transpo<br>ion driven acti | ort |           |            |
| 6)      | a) cann<br>b) are i | ntain tensio                                 | •                          |           |                                                      |     |           |            |
| 7)      | a) into             | ve transport<br>cell<br>into and or          |                            | ,         | out of cell<br>across the cel                        | II. |           |            |

| 8)  | a) constant field                                                                 | equation is also called as equation. Int field b) constant volume Int permeability d) constant coefficient |  |  |  |
|-----|-----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--|--|--|
| 9)  | Diffusion of ions always takes place<br>a) higher to lower<br>c) higher to stable | from toconcentration. b) lower to higher d) stable to lower                                                |  |  |  |
| 10) | is the unit for the product fro                                                   | m the Nernst equation.                                                                                     |  |  |  |
|     | a) mV b) mA                                                                       | c) coulombs d) tons/sec.                                                                                   |  |  |  |
| 11) | is the most important fac                                                         | tor in setting the resting membrane                                                                        |  |  |  |
|     | potential.                                                                        |                                                                                                            |  |  |  |
|     | a) K+ gradient                                                                    | b) Cl <sup>-</sup> gradient                                                                                |  |  |  |
|     | c) Na+ permeability                                                               | d) Active transport                                                                                        |  |  |  |
| 12) | Ciliary muscles of eye controls the                                               |                                                                                                            |  |  |  |
|     | a) lens movement                                                                  | b) lens curvature and focal length                                                                         |  |  |  |
|     | c) pupil                                                                          | d) retina                                                                                                  |  |  |  |
| 13) | 'Regional temperature difference wit                                              | hin an animal is obtained by                                                                               |  |  |  |
|     | a) Vasodilation                                                                   | b) Vasoconstriction                                                                                        |  |  |  |
|     | c) Both a) and b)                                                                 | d) Vasocirculation                                                                                         |  |  |  |
| 14) | Increase muscle contraction along w called                                        | ith increase rate of heat production is                                                                    |  |  |  |
|     | a) shivering b) non shivering                                                     | c) overlapping d) osmogenesis                                                                              |  |  |  |
|     |                                                                                   |                                                                                                            |  |  |  |

Set S



| Seat |  |
|------|--|
| No.  |  |

## T.E. (Biomedical Engg.) (Part – I) (CGPA) Examination, 2018 BIOLOGICAL MODELING AND SIMULATION

Day and Date: Friday, 4-5-2018 Marks: 56

Time: 10.00 a.m. to 1.00 p.m.

### SECTION - I

### 2. Attempt any four questions :

 $(4 \times 4 = 16)$ 

- 1) Explain active transport mechanism with necessary diagram.
- 2) Explain Biophysic tools with related laws and expression.
- 3) Define and differentiate Nernst equation and Donnan's equation.
- 4) Define lumped parameter models and compartmental model with each of example.
- 5) Describe modeling of regulation of cardiac output and respiratory system.

### 3. Attempt any two questions:

 $(6 \times 2 = 12)$ 

- 1) Draw and explain electrical equivalent model of a biological membrane and mention its significance.
- 2) Write a short note on:
  - a) Goldman's equation and its significance
  - b) Cable equation and its significance
- 3) Derive and explain Hodgkin Huxley conductance equations with necessary figures.

### SECTION - II

### 4. Attempt any four questions:

- 1) Explain linearized model of immuno response with one example.
- 2) Describe validation and controller model for thermo regulatory model.
- 3) Explain symptoms and effects of Parkinson's syndrome.



- 4) Explain the role of spindle receptor and golgi tendon organ in modeling of neuro muscular system.
- 5) Describe model of drug delivery system with necessary figures.
- 5. Attempt **any two** questions:

- 1) Explain four types of eye movements and name the type of muscles responsible for eye movements.
- 2) Describe thermo regulatory plant model with necessary diagram.
- 3) Write a short note on:
  - a) Insulin Glucose feedback system.
  - b) Pharmacokinetics.

|--|--|

| Seat |  |
|------|--|
| No.  |  |

Set P

## T.E. (Biomedical Engg.) (Part – I) (CGPA) Examination, 2018 MICROPROCESSORS AND MICROCONTROLLER

Day and Date : Saturday, 5-5-2018 Total Marks : 70

Time: 10.00 a.m. to 1.00 p.m.

Instructions: 1) Q. No. 1 is compulsory. It should be solved in first
30 minutes in Answer Book Page No. 3. Each question
carries one mark.

2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

## **MCQ/Objective Type Questions**

|     |                     |                       | ,,,                 |                     |  |
|-----|---------------------|-----------------------|---------------------|---------------------|--|
| Dur | ation : 30 Minutes  |                       |                     | Marks: 14           |  |
| 1.  | Choose the correct  | answer:               |                     | (1×14=14)           |  |
|     | 1) INTEL 8085 A is  | s pin                 | IC.                 |                     |  |
|     | a) 8                | b) 16                 | c) 32               | d) 40               |  |
|     | 2) In 8085, name of | of the 16 bit registe | er is               |                     |  |
|     | a) Stack pointe     | r                     | b) Program co       | ounter              |  |
|     | c) Both a) and      | b)                    | d) None of ab       | ove                 |  |
|     | 3) The ROM progr    | ammed during ma       | nufacturing proces  | ss itself is called |  |
|     |                     |                       |                     |                     |  |
|     | a) MROM             | b) PROM               | c) EPROM            | d) EEPROM           |  |
|     | 4) A field programi | mable ROM is call     | ed                  |                     |  |
|     | a) MROM             | b) PROM               | c) FROM             | d) FPROM            |  |
|     | 5) Output of the as | sembler in machir     | ne codes is referre | d to as             |  |
|     | a) Object progr     | am                    | b) Source pro       | gram                |  |
|     | c) Macro instru     | ction                 | d) Symbolic a       | ddressing           |  |

| 6)  | The cycle required to fetch and execute an instruction in a 8085 microprocessor is |                     |                     |                    |
|-----|------------------------------------------------------------------------------------|---------------------|---------------------|--------------------|
|     | a) Clock cycle                                                                     |                     | b) Memory cycle     | e                  |
|     | c) Machine cycle                                                                   |                     | d) Instruction cy   | cle                |
| 7)  | A bus connected be transfer of information                                         |                     | •                   | that permits       |
|     | a) DMA                                                                             | b) Memory           | c) Address          | d) Control         |
| 8)  | Number of hex digit location are                                                   | -                   | esent the 20 bit ac | ddress of a memory |
|     | a) 20                                                                              | b) 16               | c) 5                | d) 4               |
| 9)  | The field which is no                                                              | ever present in an  | assembly langua     | age statement is   |
|     | a) Opcode                                                                          | b) Operand          | c) Continue         | d) Comment         |
| 10) | is the I                                                                           | non-maskable inte   | errupt from the fo  | llowing.           |
|     | a) RST 7.5                                                                         | b) RST 6.5          | c) RST 5.5          | d) RST 4.5         |
| 11) | The 8085 microprod                                                                 | -                   | stal of frequency   | 6.25 MHz. The      |
|     | a) 320 ns                                                                          | b) 640 ns           | c) 960 ns           | d) 1280 ns         |
| 12) | When an 8085 micr                                                                  | oprocessor is res   | et, the address b   | us contains        |
|     | a) 0000 H                                                                          | b) 002 CH           | c) 0043 H           | d) 003 CH          |
| 13) | Pick out the matchin                                                               | ng pair.            |                     |                    |
|     | a) READY; RIM                                                                      |                     | b) HOLD; DMA        |                    |
|     | c) SID; SIM                                                                        |                     | d) S0; S1; wait s   | status             |
| 14) | A microprocessor w                                                                 | rith a 12-bit addre | ss but will be able | e to access        |
|     | a) 1 K bytes                                                                       | b) 4 K bytes        | c) 8 K bytes        | d) 10 K bytes      |

\_\_\_\_\_



| Seat |  |
|------|--|
| No.  |  |

## T.E. (Biomedical Engg.) (Part – I) (CGPA) Examination, 2018 MICROPROCESSORS AND MICROCONTROLLER

Day and Date: Saturday, 5-5-2018 Marks: 56

Time: 10.00 a.m. to 1.00 p.m.

#### SECTION - I

### 2. Attempt any four questions:

 $(4 \times 4 = 16)$ 

- 1) Describe various semiconductor memories and their significance.
- 2) Define RST 7.5, RST 5.5, RST 6.5, TRAP.
- 3) Explain any four instructions of interrupts.
- 4) Classify hardware and software interrupts.
- 5) Describe various EPROM programming methods.

### 3. Attempt any two:

 $(6 \times 2 = 12)$ 

- 1) Describe interrupt structure of 8085 in detail.
- 2) List data transfer techniques and explain them in short.
- 3) Draw and explain architecture of INTEL 8085 A.

#### SECTION - II

### 4. Attempt any four:

- 1) Define DPTR and describe it with an example.
- 2) Differentiate between memory mapped I/O and I/O mapped I/O.
- 3) Describe different data transfer techniques in 8051.
- 4) Draw and explain TCON register of microcontroller 8051.
- 5) Describe different addressing techniques used in 8051.

### 5. Attempt any two:

 $(6 \times 2 = 12)$ 

- 1) Draw interfacing diagram of DAC 6808 with 8051 microcontroller.
- 2) On the program given below, comment the result after every instruction and also find the content in the accumulator:

ORG 0000H,

MOV R 5, # 25 H

MOV R 7, # 34 H

MOV A, # 0

ADD A, R 5

ADD A, R7

ADD A, # 12 H

END.

3) Describe special function registers (SFRs) of 8051.

\_\_\_\_

|--|--|

| Seat |  |
|------|--|
| No.  |  |

## T.E. (Biomedical Engg.) (Part – I) (CGPA) Examination, 2018 MICROPROCESSORS AND MICROCONTROLLER

Day and Date: Saturday, 5-5-2018 Total Marks: 70

Time: 10.00 a.m. to 1.00 p.m.

- Instructions: 1) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book Page No. 3. Each question carries one mark.
  - 2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

|                                                                          |                  | MCQ/Objective           | Type Questions      |                     |
|--------------------------------------------------------------------------|------------------|-------------------------|---------------------|---------------------|
| Dur                                                                      | ation: 30 Minute | es                      |                     | Marks : 14          |
| 1.                                                                       | Choose the cor   | rect answer :           |                     | (1×14=14)           |
|                                                                          | ,                | nex digits needed to re | present the 20 bit  | address of a memory |
|                                                                          | a) 20            | b) 16                   | c) 5                | d) 4                |
| 2) The field which is never present in an assembly language statement is |                  |                         |                     |                     |
|                                                                          | a) Opcode        | b) Operand              | c) Continue         | d) Comment          |
| 3) is the non-maskable interrupt from the following.                     |                  |                         |                     |                     |
|                                                                          | a) RST 7.5       | b) RST 6.5              | c) RST 5.5          | d) RST 4.5          |
|                                                                          | ,                | icroprocessor uses a c  | crystal of frequenc | y 6.25 MHz. The     |
|                                                                          | a) 320 ns        | b) 640 ns               | c) 960 ns           | d) 1280 ns          |
|                                                                          | 5) When an 80    | 85 microprocessor is r  | eset, the address   | bus contains        |
|                                                                          | a) 0000 H        | P) 003 CH               | c) 0043 H           | d) 003 CH           |

| 6)  | Pick out the matching pair.                                                        |                                                                                                       |      |                  |                  |
|-----|------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|------|------------------|------------------|
|     | a) READY; RIM                                                                      |                                                                                                       | b)   | HOLD; DMA        |                  |
|     | c) SID; SIM                                                                        |                                                                                                       | d)   | S0; S1; wait s   | status           |
| 7)  | A microprocessor w                                                                 | rith a 12-bit addre                                                                                   | ss l | but will be able | e to access      |
|     | a) 1 K bytes                                                                       | b) 4 K bytes                                                                                          | c)   | 8 K bytes        | d) 10 K bytes    |
| 8)  | INTEL 8085 A is                                                                    | pin IC.                                                                                               |      |                  |                  |
|     | a) 8                                                                               | b) 16                                                                                                 | c)   | 32               | d) 40            |
| 9)  | In 8085, name of th                                                                | e 16 bit register is                                                                                  | S    |                  |                  |
|     | a) Stack pointer                                                                   |                                                                                                       | b)   | Program coul     | nter             |
|     | c) Both a) and b)                                                                  |                                                                                                       | d)   | None of abov     | re               |
| 10) | The ROM programm                                                                   | ned during manuf                                                                                      | act  | uring process    | itself is called |
|     |                                                                                    |                                                                                                       |      |                  |                  |
|     | a) MROM                                                                            | b) PROM                                                                                               | c)   | EPROM            | d) EEPROM        |
| 11) | A field programmab                                                                 | le ROM is called                                                                                      |      |                  |                  |
|     | a) MROM                                                                            | b) PROM                                                                                               | c)   | FROM             | d) FPROM         |
| 12) | Output of the assembler in machine codes is referred to as                         |                                                                                                       |      |                  |                  |
|     | a) Object program                                                                  |                                                                                                       | b)   | Source progra    | am               |
|     | c) Macro instruction                                                               | า                                                                                                     | d)   | Symbolic add     | Iressing         |
| 13) | The cycle required to fetch and execute an instruction in a 8085 microprocessor is |                                                                                                       |      |                  | in a 8085        |
|     | a) Clock cycle                                                                     |                                                                                                       | b)   | Memory cycle     | e                |
|     | c) Machine cycle                                                                   |                                                                                                       | d)   | Instruction cy   | cle              |
| 14) |                                                                                    | A bus connected between the CPU and main memory that permits transfer of information is known as bus. |      |                  | that permits     |
|     | a) DMA                                                                             | b) Memory                                                                                             | c)   | Address          | d) Control       |



| Seat |  |
|------|--|
| No.  |  |

## T.E. (Biomedical Engg.) (Part – I) (CGPA) Examination, 2018 MICROPROCESSORS AND MICROCONTROLLER

Day and Date: Saturday, 5-5-2018 Marks: 56

Time: 10.00 a.m. to 1.00 p.m.

#### SECTION - I

### 2. Attempt any four questions:

 $(4 \times 4 = 16)$ 

- 1) Describe various semiconductor memories and their significance.
- 2) Define RST 7.5, RST 5.5, RST 6.5, TRAP.
- 3) Explain any four instructions of interrupts.
- 4) Classify hardware and software interrupts.
- 5) Describe various EPROM programming methods.

### 3. Attempt any two:

 $(6 \times 2 = 12)$ 

- 1) Describe interrupt structure of 8085 in detail.
- 2) List data transfer techniques and explain them in short.
- 3) Draw and explain architecture of INTEL 8085 A.

#### SECTION - II

### 4. Attempt any four:

- 1) Define DPTR and describe it with an example.
- 2) Differentiate between memory mapped I/O and I/O mapped I/O.
- 3) Describe different data transfer techniques in 8051.
- 4) Draw and explain TCON register of microcontroller 8051.
- 5) Describe different addressing techniques used in 8051.

5. Attempt any two:

 $(6 \times 2 = 12)$ 

- 1) Draw interfacing diagram of DAC 6808 with 8051 microcontroller.
- 2) On the program given below, comment the result after every instruction and also find the content in the accumulator:

ORG 0000H,

MOV R 5, # 25 H

MOV R 7, # 34 H

MOV A, # 0

ADD A, R 5

ADD A, R7

ADD A, # 12 H

END.

3) Describe special function registers (SFRs) of 8051.

\_\_\_\_

| <br> | <br> |  |
|------|------|--|

| Seat |  |
|------|--|
| No.  |  |

Set R

# T.E. (Biomedical Engg.) (Part – I) (CGPA) Examination, 2018 MICROPROCESSORS AND MICROCONTROLLER

Day and Date: Saturday, 5-5-2018 Total Marks: 70

Time: 10.00 a.m. to 1.00 p.m.

- Instructions: 1) Q. No. 1 is compulsory. It should be solved in first
  30 minutes in Answer Book Page No. 3. Each question
  carries one mark.
  - 2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

### **MCQ/Objective Type Questions**

| Dura | atio | n : 30 Minutes                          |                  |     |                 |               | Marks: 14 |
|------|------|-----------------------------------------|------------------|-----|-----------------|---------------|-----------|
| 1.   | Ch   | noose the correct an                    | swer:            |     |                 |               | (1×14=14) |
|      | 1)   | Output of the asser                     | mbler in machine | cod | es is referred  | to as         |           |
|      |      | a) Object program                       |                  | b)  | Source progr    | ram           |           |
|      |      | c) Macro instructio                     | n                | d)  | Symbolic add    | dressing      |           |
|      | 2)   | The cycle required microprocessor is _  |                  | ute | an instruction  | in a 8085     |           |
|      |      | a) Clock cycle                          |                  | b)  | Memory cycl     | е             |           |
|      |      | c) Machine cycle                        |                  | d)  | Instruction cy  | /cle          |           |
|      | 3)   | A bus connected be transfer of informat |                  |     | -               | that permits  | ;         |
|      |      | a) DMA                                  | b) Memory        | c)  | Address         | d) Control    |           |
|      | 4)   | Number of hex digital                   | •                | ese | nt the 20 bit a | ddress of a r | nemory    |
|      |      | a) 20                                   | b) 16            | c)  | 5               | d) 4          |           |

| 5)  | The field which is no                  | he field which is never present in an assembly language statement is |                     |                  |
|-----|----------------------------------------|----------------------------------------------------------------------|---------------------|------------------|
|     | a) Opcode                              | b) Operand                                                           | c) Continue         | d) Comment       |
| 6)  | is the I                               | non-maskable inte                                                    | errupt from the fo  | llowing.         |
|     | a) RST 7.5                             | b) RST 6.5                                                           | c) RST 5.5          | d) RST 4.5       |
| 7)  | The 8085 microprod<br>T-state value is |                                                                      | stal of frequency   | 6.25 MHz. The    |
|     | a) 320 ns                              | b) 640 ns                                                            | c) 960 ns           | d) 1280 ns       |
| 8)  | When an 8085 micr                      | oprocessor is res                                                    | et, the address b   | us contains      |
|     | a) 0000 H                              | b) 002 CH                                                            | c) 0043 H           | d) 003 CH        |
| 9)  | Pick out the matching                  | ng pair.                                                             |                     |                  |
|     | a) READY; RIM                          |                                                                      | b) HOLD; DMA        |                  |
|     | c) SID; SIM                            |                                                                      | d) S0; S1; wait s   | status           |
| 10) | A microprocessor w                     | ith a 12-bit addre                                                   | ss but will be able | e to access      |
|     | a) 1 K bytes                           | b) 4 K bytes                                                         | c) 8 K bytes        | d) 10 K bytes    |
| 11) | INTEL 8085 A is                        | pin IC.                                                              |                     |                  |
|     | a) 8                                   | b) 16                                                                | c) 32               | d) 40            |
| 12) | In 8085, name of th                    | e 16 bit register is                                                 | S                   |                  |
|     | a) Stack pointer                       |                                                                      | b) Program coul     | nter             |
|     | c) Both a) and b)                      |                                                                      | d) None of abov     | re               |
| 13) | The ROM programm                       | ned during manuf                                                     | facturing process   | itself is called |
|     | a) MROM                                | b) PROM                                                              | c) EPROM            | d) EEPROM        |
| 14) | A field programmab                     | le ROM is called                                                     |                     |                  |
|     | a) MROM                                | b) PROM                                                              | c) FROM             | d) FPROM         |



| Seat |  |
|------|--|
| No.  |  |

## T.E. (Biomedical Engg.) (Part – I) (CGPA) Examination, 2018 MICROPROCESSORS AND MICROCONTROLLER

Day and Date: Saturday, 5-5-2018 Marks: 56

Time: 10.00 a.m. to 1.00 p.m.

#### SECTION - I

### 2. Attempt any four questions:

 $(4 \times 4 = 16)$ 

- 1) Describe various semiconductor memories and their significance.
- 2) Define RST 7.5, RST 5.5, RST 6.5, TRAP.
- 3) Explain any four instructions of interrupts.
- 4) Classify hardware and software interrupts.
- 5) Describe various EPROM programming methods.

### 3. Attempt any two:

 $(6 \times 2 = 12)$ 

- 1) Describe interrupt structure of 8085 in detail.
- 2) List data transfer techniques and explain them in short.
- 3) Draw and explain architecture of INTEL 8085 A.

#### SECTION - II

### 4. Attempt any four:

- 1) Define DPTR and describe it with an example.
- 2) Differentiate between memory mapped I/O and I/O mapped I/O.
- 3) Describe different data transfer techniques in 8051.
- 4) Draw and explain TCON register of microcontroller 8051.
- 5) Describe different addressing techniques used in 8051.

5. Attempt any two:

 $(6 \times 2 = 12)$ 

- 1) Draw interfacing diagram of DAC 6808 with 8051 microcontroller.
- 2) On the program given below, comment the result after every instruction and also find the content in the accumulator:

ORG 0000H,

MOV R 5, # 25 H

MOV R 7, # 34 H

MOV A, # 0

ADD A, R 5

ADD A, R7

ADD A, # 12 H

END.

3) Describe special function registers (SFRs) of 8051.

\_\_\_\_

|--|--|

**SLR-TC - 452** 

| Seat |  |
|------|--|
| No.  |  |

### T.E. (Biomedical Engg.) (Part – I) (CGPA) Examination, 2018 MICROPROCESSORS AND MICROCONTROLLER

Day and Date: Saturday, 5-5-2018 Total Marks: 70

Time: 10.00 a.m. to 1.00 p.m.

Instructions: 1) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book Page No. 3. Each question carries one mark.

> 2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

### **MCQ/Objective Type Questions**

| Dur | atior | n : 30 Minutes                         |                    |                     |               | Marks: 14 |
|-----|-------|----------------------------------------|--------------------|---------------------|---------------|-----------|
| 1.  | Cho   | oose the correct ans                   | swer:              |                     |               | (1×14=14) |
|     | 1)    | is the r                               | non-maskable inte  | errupt from the fo  | llowing.      |           |
|     |       | a) RST 7.5                             | b) RST 6.5         | c) RST 5.5          | d) RST 4.5    |           |
|     | ,     | The 8085 microprod<br>T-state value is | •                  | stal of frequency   | 6.25 MHz. T   | he        |
|     |       | a) 320 ns                              | b) 640 ns          | c) 960 ns           | d) 1280 ns    |           |
|     | 3)    | When an 8085 micr                      | oprocessor is res  | et, the address b   | us contains _ |           |
|     |       | a) 0000 H                              | b) 002 CH          | c) 0043 H           | d) 003 CH     |           |
|     | 4)    | Pick out the matchir                   | ng pair.           |                     |               |           |
|     |       | a) READY; RIM                          |                    | b) HOLD; DMA        |               |           |
|     |       | c) SID; SIM                            |                    | d) S0; S1; wait s   | status        |           |
|     | 5)    | A microprocessor w                     | ith a 12-bit addre | ss but will be able | e to access _ |           |
|     |       | a) 1 K bytes                           | b) 4 K bytes       | c) 8 K bytes        | d) 10 K byt   | es        |

| 6)                                                                                        | INTEL 8085 A is                           | pin IC.              |                        |                  |                    |  |
|-------------------------------------------------------------------------------------------|-------------------------------------------|----------------------|------------------------|------------------|--------------------|--|
|                                                                                           | a) 8                                      | b) 16                | c)                     | 32               | d) 40              |  |
| 7)                                                                                        | In 8085, name of th                       | e 16 bit register is | S                      |                  |                    |  |
|                                                                                           | a) Stack pointer                          |                      | b)                     | Program cour     | nter               |  |
|                                                                                           | c) Both a) and b)                         |                      | d)                     | None of above    | е                  |  |
| 8)                                                                                        | The ROM programr                          | ned during manut     | fact                   | uring process    | itself is called   |  |
|                                                                                           | a) MROM                                   | b) PROM              | c)                     | EPROM            | d) EEPROM          |  |
| 9)                                                                                        | A field programmab                        | le ROM is called     |                        |                  |                    |  |
|                                                                                           | a) MROM                                   | b) PROM              | c)                     | FROM             | d) FPROM           |  |
| 10)                                                                                       | Output of the assen                       | nbler in machine o   | cod                    | es is referred t | o as               |  |
|                                                                                           | a) Object program                         |                      | b) Source program      |                  |                    |  |
|                                                                                           | c) Macro instruction                      |                      | d) Symbolic addressing |                  |                    |  |
| l 1)                                                                                      | The cycle required to microprocessor is _ |                      | ute                    | an instruction   | in a 8085          |  |
|                                                                                           | a) Clock cycle                            |                      | b)                     | Memory cycle     | )                  |  |
|                                                                                           | c) Machine cycle                          |                      | d)                     | Instruction cy   | cle                |  |
| 12)                                                                                       | A bus connected be transfer of informati  |                      |                        |                  | that permits       |  |
|                                                                                           | a) DMA                                    | b) Memory            | c)                     | Address          | d) Control         |  |
| 13) Number of hex digits needed to represent the 20 bit address of a memoral location are |                                           |                      |                        |                  | ldress of a memory |  |
|                                                                                           | a) 20                                     | b) 16                | c)                     | 5                | d) 4               |  |
| 14)                                                                                       | The field which is no                     | ever present in ar   | n as                   | ssembly langua   | age statement is   |  |
|                                                                                           | a) Opcode                                 | b) Operand           | c)                     | Continue         | d) Comment         |  |



| Seat |  |
|------|--|
| No.  |  |

# T.E. (Biomedical Engg.) (Part – I) (CGPA) Examination, 2018 MICROPROCESSORS AND MICROCONTROLLER

Day and Date: Saturday, 5-5-2018 Marks: 56

Time: 10.00 a.m. to 1.00 p.m.

#### SECTION - I

#### 2. Attempt any four questions:

 $(4 \times 4 = 16)$ 

- 1) Describe various semiconductor memories and their significance.
- 2) Define RST 7.5, RST 5.5, RST 6.5, TRAP.
- 3) Explain any four instructions of interrupts.
- 4) Classify hardware and software interrupts.
- 5) Describe various EPROM programming methods.

### 3. Attempt any two:

 $(6 \times 2 = 12)$ 

- 1) Describe interrupt structure of 8085 in detail.
- 2) List data transfer techniques and explain them in short.
- 3) Draw and explain architecture of INTEL 8085 A.

#### SECTION - II

### 4. Attempt any four:

 $(4 \times 4 = 16)$ 

- 1) Define DPTR and describe it with an example.
- 2) Differentiate between memory mapped I/O and I/O mapped I/O.
- 3) Describe different data transfer techniques in 8051.
- 4) Draw and explain TCON register of microcontroller 8051.
- 5) Describe different addressing techniques used in 8051.

### 5. Attempt any two:

 $(6 \times 2 = 12)$ 

- 1) Draw interfacing diagram of DAC 6808 with 8051 microcontroller.
- 2) On the program given below, comment the result after every instruction and also find the content in the accumulator:

ORG 0000H,

MOV R 5, # 25 H

MOV R 7, # 34 H

MOV A, # 0

ADD A, R 5

ADD A, R7

ADD A, # 12 H

END.

3) Describe special function registers (SFRs) of 8051.

\_\_\_\_



| Seat |     |   |  |
|------|-----|---|--|
| No.  | Set | Р |  |

# T.E. (Biomedical Engg.) (Part – I) (CGPA) Examination, 2018 PRINCIPLES OF COMMUNICATION

| -       | nd Date : Mond<br>10.00 a.m. to                           | -                                             |                                   |                                     | Total Marks : 70                                                             |
|---------|-----------------------------------------------------------|-----------------------------------------------|-----------------------------------|-------------------------------------|------------------------------------------------------------------------------|
|         |                                                           | 30 minutes in carries one ma<br>2) Answer MCQ | Answer<br>ark.<br><b>Objectiv</b> | Book Page No<br>e type question     | be solved in first b. 3. Each question ons on Page No. 3 et (P/Q/R/S) on Top |
| Duratio | on : 30 Minutes                                           | MCQ/Objecti                                   | ve Type                           | Questions                           | Marks : 14                                                                   |
| Daratio | on . oo wiinates                                          |                                               |                                   |                                     | Marks . 14                                                                   |
| 1. Ch   | noose the corre                                           | ct answer :                                   |                                   |                                     | (1×14=14)                                                                    |
| ·       | <ul><li>a) at the trans</li><li>c) in informat</li></ul>  | ion source                                    | b) i<br>d) a                      | n the channel at destination        |                                                                              |
| 2)      |                                                           | - • •                                         | oise becc                         | mes of great in                     | mportance at high                                                            |
|         | frequencies that a) shot noise c) impulse no              |                                               | ,                                 | random noise<br>transit time nois   | se                                                                           |
| 3)      | i                                                         | s the most reliable                           | measurer                          | ment for compai                     | ring amplifier noise                                                         |
|         | characteristic. a) Signal to n c) Shot noise              | oise ratio                                    | ,                                 | Noise factor<br>Thermal noise       |                                                                              |
| 4)      | In a low level<br>be                                      | AM system, amp                                | lifiers foll                      | owing the mod                       | ulated stage must                                                            |
|         | <ul><li>a) linear devidue</li><li>c) class C am</li></ul> |                                               | •                                 | narmonic device<br>nonlinear device |                                                                              |
| 5)      | is                                                        | the ratio of modul                            | ating pov                         | ver to total pow                    | er at 100 percent                                                            |
|         | modulation. a) 1:3                                        | b) 1:2                                        | c) 2                              | 2:3                                 | d) none                                                                      |



| 6)  | The modulation index of an AM wave power is | is changed from 0 to 1. The transmitted |
|-----|---------------------------------------------|-----------------------------------------|
|     | a) unchanged                                | b) halved                               |
|     | c) doubled                                  | d) increase by 50%                      |
| 7)  | is an indirect way of                       | ,                                       |
| ')  | a) Reactance FET modulator                  | -                                       |
|     | c) Armstrong modulator                      | d) Reactance bipolar modulator          |
| 8)  | pulse modulation syst                       |                                         |
| O)  | a) PCM                                      | b) Differential PCM                     |
|     | c) PWM                                      | d) Delta                                |
| ۵)  | Channel coding is used to                   | u) 20.10                                |
| 3)  | a) secure the channel                       |                                         |
|     | b) minimize interference                    |                                         |
|     | c) protect information against noise        |                                         |
|     | d) protect against unnecessary fapp         | ing of signal                           |
| 10) | ASK is a result of combination of shi       | ft keying and modulation.               |
| ,   |                                             | c) amplitude d) none                    |
| 11) | OSI reference model defines a networ        | king framework to implement protocols   |
| ,   | in layer.                                   |                                         |
|     | a) 5 b) 7                                   | c) 10 d) 11                             |
| 12) | FSK is used mostly in                       |                                         |
|     | a) telephony                                | b) telegraphy                           |
|     | c) radio transmission                       | d) none of the above                    |
| 13) | QAM uses as the dimens                      | sions.                                  |
|     | a) in phase b) quadrature                   | c) both a and b d) none                 |
| 14) | The noise that affects PCM is               | noise.                                  |
|     | a) transmission b) quantizing               | c) transit d) both a and b              |
|     |                                             |                                         |



| Seat |  |
|------|--|
| No.  |  |

### T.E. (Biomedical Engg.) (Part – I) (CGPA) Examination, 2018 PRINCIPLES OF COMMUNICATION

Day and Date: Monday, 7-5-2018 Marks: 56

Time: 10.00 a.m. to 1.00 p.m.

#### SECTION - I

2. Attempt any 4 questions:

 $(4 \times 4 = 16)$ 

- Define amplitude modulation, modulation index and different components of AM wave.
- 2) Calculate the percentage power saving when the carrier and one of the side bands are suppressed in an AM wave modulated to a depth of
  - a) 100 %

- b) 50%.
- 3) Define and classify noise. Describe each type of noise with each of example.
- 4) Differentiate between SSB and VSB.
- 5) Explain concept of pre-emphasis and de-emphasis.

3. Attempt any two questions:

 $(6 \times 2 = 12)$ 

- 1) Draw and explain working of Armstrong frequency modulation system.
- 2) Explain the generation of SSB signal using phase shift method.
- 3) The antenna current of an AM transmitter is 8 A when only the carrier is sent, but it increases to 8.93 A when the carrier is modulated by a single sine wave. Find the percentage modulation. Determine the antenna current when the percent of modulation changes to 0.8.

#### SECTION - II

4. Attempt any 4 questions:

 $(4 \times 4 = 16)$ 

- 1) Explain the working of PAM modulation circuit.
- 2) Explain convolution and binary cyclic codes with each of example.
- 3) State and explain sampling theorem and its significance.



- 4) Explain generation of Differential Pulse Code Modulation (DPCM).
- 5) Describe the generation of M ary QAM.

### 5. Attempt any 2:

 $(6 \times 2 = 12)$ 

- 1) Define quantization process and explain its types in detail.
- 2) Define and differentiate between PAM, PPM and PWM.
- 3) Write a short note on:
  - a) Encoders and decoders
  - b) Hamming codes.

Set P



| Seat |     |   |
|------|-----|---|
| No.  | Set | Q |

# T.E. (Biomedical Engg.) (Part – I) (CGPA) Examination, 2018 PRINCIPLES OF COMMUNICATION

|         | PF                                                                                                        | RINCIPLES                                                     | OF COM                                | MUNICATION                                                           | N                                                |                     |
|---------|-----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------|--------------------------------------------------|---------------------|
| -       | d Date : Monday, 10.00 a.m. to 1.00                                                                       |                                                               |                                       |                                                                      | Tota                                             | ıl Marks : 70       |
|         | 2) A                                                                                                      | <b>30 minutes</b><br>carries <b>one</b> l<br><b>Answer MC</b> | in Answe<br>mark.<br><b>Q/Objecti</b> | sory. It should<br>r Book Page N<br>ve type quest<br>nention, Q.P. S | No. <mark>3. Each</mark><br>F <b>ions on P</b> a | question  age No. 3 |
| Duratio | n : 30 Minutes                                                                                            | MCQ/Obje                                                      | ctive Type                            | <b>Questions</b>                                                     |                                                  | Marks: 14           |
| 1. Ch   | oose the correct a                                                                                        | nswer:                                                        |                                       |                                                                      |                                                  | (1×14=14)           |
|         | a) PCM c) PWM Channel coding is a) secure the cha b) minimize interf c) protect informa d) protect agains | s used to<br>annel<br>erence<br>ation agains                  | b)<br>d)<br>t noise                   | Differential PC<br>Delta                                             | CM                                               |                     |
| 3)      | ASK is a result of a) digital                                                                             |                                                               |                                       | eying and<br>amplitude                                               |                                                  | lulation.           |
| ŕ       | OSI reference modin layer a) 5 FSK is used most a) telephony c) radio transmiss                           | er.<br>b) 7<br>:ly in                                         | c)<br>b)                              | g framework to i<br>10<br>telegraphy<br>none of the ab               | d) 11                                            | rotocols            |
| 6)      | QAM usesa) in phase                                                                                       | as the                                                        |                                       | ns.<br>both a and b                                                  | d) none                                          |                     |

| 7)  | The noise that affe                      | ects PCM is         |      | noise.           |       |                   |
|-----|------------------------------------------|---------------------|------|------------------|-------|-------------------|
|     | a) transmission                          | b) quantizing       | c)   | transit          | d)    | both a and b      |
| 8)  | In a communicatio                        | •                   |      | _                |       |                   |
|     | a) at the transmitte                     | er                  | b)   | in the channel   |       |                   |
|     | c) in information s                      | ource               | d)   | at destination   |       |                   |
| 9)  | One of the following frequencies that is | • ,.                | bed  | comes of great   | imp   | ortance at high   |
|     | a) shot noise                            |                     | b)   | random noise     |       |                   |
|     | c) impulse noise                         |                     | d)   | transit time noi | se    |                   |
| 10) | is the                                   | most reliable meas  | sure | ement for compa  | ırinç | g amplifier noise |
|     | characteristic.                          |                     |      |                  |       |                   |
|     | a) Signal to noise                       | ratio               | b)   | Noise factor     |       |                   |
|     | c) Shot noise                            |                     | d)   | Thermal noise    |       |                   |
| 11) | In a low level AM                        | system, amplifiers  | s fo | llowing the mod  | aluk  | ted stage must    |
|     | be                                       |                     |      |                  |       |                   |
|     | a) linear devices                        |                     | ,    | harmonic device  |       |                   |
|     | c) class C amplifie                      | er                  | d)   | nonlinear devi   | ces   |                   |
| 12) | is the I                                 | ratio of modulating | gpc  | wer to total pov | ver   | at 100 percent    |
|     | modulation.                              |                     |      |                  |       |                   |
|     | a) 1:3                                   | b) 1:2              | c)   | 2:3              | d)    | none              |
| 13) | The modulation ind power is              | lex of an AM wave   | is c | hanged from 0 to | o 1.  | The transmitted   |
|     | a) unchanged                             |                     | ,    | halved           |       |                   |
|     | c) doubled                               |                     | d)   | increase by 50   | %     |                   |
| 14) | is a                                     |                     |      |                  |       |                   |
|     | a) Reactance FET                         |                     |      |                  |       |                   |
|     | c) Armstrong mod                         | lulator             | a)   | Reactance bip    | olar  | modulator         |
|     |                                          |                     |      |                  |       |                   |



| Seat |  |
|------|--|
| No.  |  |

# T.E. (Biomedical Engg.) (Part – I) (CGPA) Examination, 2018 PRINCIPLES OF COMMUNICATION

Day and Date: Monday, 7-5-2018 Marks: 56

Time: 10.00 a.m. to 1.00 p.m.

#### SECTION - I

2. Attempt any 4 questions:

 $(4 \times 4 = 16)$ 

- 1) Define amplitude modulation, modulation index and different components of AM wave.
- 2) Calculate the percentage power saving when the carrier and one of the side bands are suppressed in an AM wave modulated to a depth of

a) 100 %

- b) 50%.
- 3) Define and classify noise. Describe each type of noise with each of example.
- 4) Differentiate between SSB and VSB.
- 5) Explain concept of pre-emphasis and de-emphasis.

3. Attempt any two questions:

 $(6 \times 2 = 12)$ 

- 1) Draw and explain working of Armstrong frequency modulation system.
- 2) Explain the generation of SSB signal using phase shift method.
- 3) The antenna current of an AM transmitter is 8 A when only the carrier is sent, but it increases to 8.93 A when the carrier is modulated by a single sine wave. Find the percentage modulation. Determine the antenna current when the percent of modulation changes to 0.8.

#### SECTION - II

4. Attempt any 4 questions:

 $(4 \times 4 = 16)$ 

- 1) Explain the working of PAM modulation circuit.
- 2) Explain convolution and binary cyclic codes with each of example.
- 3) State and explain sampling theorem and its significance.



- 4) Explain generation of Differential Pulse Code Modulation (DPCM).
- 5) Describe the generation of M arry QAM.

### 5. Attempt any 2:

 $(6 \times 2 = 12)$ 

- 1) Define quantization process and explain its types in detail.
- 2) Define and differentiate between PAM, PPM and PWM.
- 3) Write a short note on:
  - a) Encoders and decoders
  - b) Hamming codes.

Set Q



| Seat |     |   |
|------|-----|---|
| No.  | Set | K |

# T.E. (Biomedical Engg.) (Part – I) (CGPA) Examination, 2018 PRINCIPLES OF COMMUNICATION

|            |                                | PRINCIPLES OF                                                                                              | COM                           | MUNICATI                          | ON               |                      |
|------------|--------------------------------|------------------------------------------------------------------------------------------------------------|-------------------------------|-----------------------------------|------------------|----------------------|
| •          | d Date : Mond<br>10.00 a.m. to | •                                                                                                          |                               |                                   | Tota             | al Marks : 70        |
| 1          |                                | 1) Q. No. 1 is co<br>30 minutes in a<br>carries one man<br>2) Answer MCQ/C<br>only. Don't forg<br>of Page. | Answe<br>k.<br><b>Objecti</b> | r Book Page<br><b>ve type que</b> | e No. 3. Each    | n question age No. 3 |
| Duratio    | n : 30 Minutes                 | MCQ/Objectiv                                                                                               | е Туре                        | e Questions                       |                  | Marks : 14           |
| 1. Ch      | oose the corre                 | ct answer :                                                                                                |                               |                                   |                  | (1×14=14)            |
| 1)         | is modulation.                 | the ratio of modula                                                                                        | ting po                       | wer to total p                    | oower at 100 p   | percent              |
|            | a) 1:3                         | b) 1:2                                                                                                     | c)                            | 2:3                               | d) none          |                      |
| 2)         | The modulation power is        | on index of an AM wa                                                                                       | ıve is c                      | hanged from                       | 0 to 1. The tran | nsmitted             |
|            | a) unchanged                   | d                                                                                                          | ,                             | halved                            |                  |                      |
|            | c) doubled                     |                                                                                                            | d)                            | increase by                       | 50%              |                      |
| 3)         |                                | _ is an indirect way                                                                                       |                               |                                   |                  |                      |
|            |                                | FET modulator<br>modulator                                                                                 |                               |                                   |                  |                      |
| 4)         |                                | pulse modulation s                                                                                         |                               |                                   |                  |                      |
|            | a) PCM                         |                                                                                                            | ,                             | Differential                      | PCM              |                      |
| <b>5</b> \ | c) PWM                         | ag is used to                                                                                              | u)                            | Delta                             |                  |                      |
| 3)         | Channel coding a) secure the   | •                                                                                                          |                               |                                   |                  |                      |
|            | b) minimize ii                 |                                                                                                            |                               |                                   |                  |                      |
|            | · ·                            | ormation against no                                                                                        |                               |                                   |                  |                      |
|            | d) protect aga                 | ainst unnecessary f                                                                                        | apping                        | of signal                         |                  |                      |
|            |                                |                                                                                                            |                               |                                   |                  |                      |



| 6)  | ASK is a result of com          | nbination of shi | ft k | eying and         |      | modulation.       |
|-----|---------------------------------|------------------|------|-------------------|------|-------------------|
|     | a) digital b)                   | analog           | c)   | amplitude         | d)   | none              |
| 7)  | OSI reference model d in layer. | efines a networ  | kin  | g framework to ir | npl  | ement protocols   |
|     | a) 5 b)                         | 7                | c)   | 10                | d)   | 11                |
| 8)  | FSK is used mostly in           |                  |      |                   |      |                   |
|     | a) telephony                    |                  | b)   | telegraphy        |      |                   |
|     | c) radio transmission           |                  | d)   | none of the abo   | ove  |                   |
| 9)  | QAM uses                        | _ as the dimens  | sior | ns.               |      |                   |
|     | a) in phase b)                  | quadrature       | c)   | both a and b      | d)   | none              |
| 10) | The noise that affects          | PCM is           |      | noise.            |      |                   |
|     | a) transmission b)              | quantizing       | c)   | transit           | d)   | both a and b      |
| 11) | In a communication sy           | ystem noise is   | affe | ects the signal   |      |                   |
|     | a) at the transmitter           |                  | b)   | in the channel    |      |                   |
|     | c) in information sour          |                  |      |                   |      |                   |
| 12) | One of the following t          | ypes of noise    | bec  | comes of great i  | mp   | ortance at high   |
|     | frequencies that is             |                  |      |                   |      |                   |
|     | a) shot noise                   |                  | b)   | random noise      |      |                   |
|     | c) impulse noise                |                  | d)   | transit time noi  | se   |                   |
| 13) | is the mo                       | st reliable meas | sure | ement for compa   | ring | g amplifier noise |
| ,   | characteristic.                 |                  |      | •                 |      |                   |
|     | a) Signal to noise rati         | 0                | b)   | Noise factor      |      |                   |
|     | c) Shot noise                   |                  | d)   | Thermal noise     |      |                   |
| 14) | In a low level AM sys           | tem, amplifiers  | fo   | llowing the mod   | lula | ted stage must    |
| ,   | be                              |                  |      | · ·               |      | J                 |
|     | a) linear devices               |                  | b)   | harmonic device   | es   |                   |
|     | c) class C amplifier            |                  | d)   | nonlinear device  | es   |                   |
|     |                                 |                  |      |                   |      |                   |



| Seat |  |
|------|--|
| No.  |  |

# T.E. (Biomedical Engg.) (Part – I) (CGPA) Examination, 2018 PRINCIPLES OF COMMUNICATION

Day and Date: Monday, 7-5-2018 Marks: 56

Time: 10.00 a.m. to 1.00 p.m.

#### SECTION - I

2. Attempt any 4 questions:

 $(4 \times 4 = 16)$ 

- Define amplitude modulation, modulation index and different components of AM wave.
- 2) Calculate the percentage power saving when the carrier and one of the side bands are suppressed in an AM wave modulated to a depth of

a) 100 %

- b) 50%.
- 3) Define and classify noise. Describe each type of noise with each of example.
- 4) Differentiate between SSB and VSB.
- 5) Explain concept of pre-emphasis and de-emphasis.

3. Attempt any two questions:

 $(6 \times 2 = 12)$ 

- 1) Draw and explain working of Armstrong frequency modulation system.
- 2) Explain the generation of SSB signal using phase shift method.
- 3) The antenna current of an AM transmitter is 8 A when only the carrier is sent, but it increases to 8.93 A when the carrier is modulated by a single sine wave. Find the percentage modulation. Determine the antenna current when the percent of modulation changes to 0.8.

#### SECTION - II

4. Attempt any 4 questions:

 $(4 \times 4 = 16)$ 

- 1) Explain the working of PAM modulation circuit.
- 2) Explain convolution and binary cyclic codes with each of example.
- 3) State and explain sampling theorem and its significance.



- 4) Explain generation of Differential Pulse Code Modulation (DPCM).
- 5) Describe the generation of M arry QAM.

### 5. Attempt any 2:

 $(6 \times 2 = 12)$ 

- 1) Define quantization process and explain its types in detail.
- 2) Define and differentiate between PAM, PPM and PWM.
- 3) Write a short note on:
  - a) Encoders and decoders
  - b) Hamming codes.

Set R



| Seat |     |   |  |
|------|-----|---|--|
| No.  | Set | S |  |

# T.E. (Biomedical Engg.) (Part – I) (CGPA) Examination, 2018

| P                                                                                          | RINCIPLES OF                                      | COMMUNICATIO                                                                          | N     | ,                                |
|--------------------------------------------------------------------------------------------|---------------------------------------------------|---------------------------------------------------------------------------------------|-------|----------------------------------|
| Day and Date: Monday Time: 10.00 a.m. to 1.0                                               |                                                   |                                                                                       |       | Total Marks: 70                  |
|                                                                                            | 30 minutes in All carries one mark. Answer MCQ/Ob | npulsory. It should<br>nswer Book Page I<br>njective type ques<br>It to mention, Q.P. | No. s | 3. Each question s on Page No. 3 |
| Duration: 30 Minutes                                                                       | MCQ/Objective                                     | Type Questions                                                                        |       | Marks : 14                       |
|                                                                                            |                                                   |                                                                                       |       |                                  |
| <ol> <li>Choose the correct</li> <li>ASK is a result of a) digital</li> </ol>              | of combination of s<br>b) analog                  | c) amplitude                                                                          | d)    | none                             |
| 2) OSI reference mo<br>in la<br>a) 5<br>3) FSK is used mo                                  | yer.<br>b) 7                                      | c) 10                                                                                 | d)    |                                  |
| <ul><li>a) telephony</li><li>c) radio transmi</li></ul>                                    | ssion                                             | <ul><li>b) telegraphy</li><li>d) none of the al</li></ul>                             | oove  |                                  |
|                                                                                            | b) quadrature                                     | c) both a and b                                                                       | d)    | none                             |
| <ol><li>5) The noise that a<br/>a) transmission</li></ol>                                  |                                                   | noise.<br>c) transit                                                                  | d)    | both a and b                     |
| <ul><li>6) In a communication</li><li>a) at the transm</li><li>c) in information</li></ul> | itter                                             | s affects the signal<br>b) in the channe<br>d) at destination                         |       |                                  |
| 7) One of the follow frequencies that a) shot noise c) impulse noise                       | is                                                | be becomes of great<br>b) random noise<br>d) transit time no                          | ,     | ortance at high                  |



| 8)  | is the most reliable meas                       | surement for comparing amplifier noise |
|-----|-------------------------------------------------|----------------------------------------|
|     | characteristic.                                 |                                        |
|     | a) Signal to noise ratio                        | b) Noise factor                        |
|     | c) Shot noise                                   | d) Thermal noise                       |
| 9)  | In a low level AM system, amplifiers be         | following the modulated stage must     |
|     | a) linear devices                               | b) harmonic devices                    |
|     | c) class C amplifier                            | d) nonlinear devices                   |
| 10) | is the ratio of modulating                      | power to total power at 100 percent    |
|     | modulation.                                     |                                        |
|     | a) 1:3 b) 1:2                                   | c) 2:3 d) none                         |
| 11) | The modulation index of an AM wave power is     | s changed from 0 to 1. The transmitted |
|     | a) unchanged                                    | b) halved                              |
|     | c) doubled                                      | d) increase by 50%                     |
| 12) | is an indirect way of                           | generating FM.                         |
|     | a) Reactance FET modulator                      | b) Varactor diode modulator            |
|     | c) Armstrong modulator                          | d) Reactance bipolar modulator         |
| 13) | pulse modulation syst                           | em is analog.                          |
|     | a) PCM                                          | b) Differential PCM                    |
|     | c) PWM                                          | d) Delta                               |
| 14) | Channel coding is used to a) secure the channel |                                        |
|     | b) minimize interference                        |                                        |
|     | c) protect information against noise            |                                        |
|     | d) protect against unnecessary fapp             | ing of signal                          |
|     | , i                                             |                                        |



| Seat |  |
|------|--|
| No.  |  |

# T.E. (Biomedical Engg.) (Part – I) (CGPA) Examination, 2018 PRINCIPLES OF COMMUNICATION

Day and Date: Monday, 7-5-2018 Marks: 56

Time: 10.00 a.m. to 1.00 p.m.

#### SECTION - I

2. Attempt any 4 questions:

 $(4 \times 4 = 16)$ 

- Define amplitude modulation, modulation index and different components of AM wave.
- 2) Calculate the percentage power saving when the carrier and one of the side bands are suppressed in an AM wave modulated to a depth of
  - a) 100 %

- b) 50%.
- 3) Define and classify noise. Describe each type of noise with each of example.
- 4) Differentiate between SSB and VSB.
- 5) Explain concept of pre-emphasis and de-emphasis.

3. Attempt any two questions:

 $(6 \times 2 = 12)$ 

- 1) Draw and explain working of Armstrong frequency modulation system.
- 2) Explain the generation of SSB signal using phase shift method.
- 3) The antenna current of an AM transmitter is 8 A when only the carrier is sent, but it increases to 8.93 A when the carrier is modulated by a single sine wave. Find the percentage modulation. Determine the antenna current when the percent of modulation changes to 0.8.

#### SECTION - II

4. Attempt any 4 questions:

 $(4 \times 4 = 16)$ 

- 1) Explain the working of PAM modulation circuit.
- 2) Explain convolution and binary cyclic codes with each of example.
- 3) State and explain sampling theorem and its significance.



- 4) Explain generation of Differential Pulse Code Modulation (DPCM).
- 5) Describe the generation of M arry QAM.

### 5. Attempt any 2:

 $(6 \times 2 = 12)$ 

- 1) Define quantization process and explain its types in detail.
- 2) Define and differentiate between PAM, PPM and PWM.
- 3) Write a short note on:
  - a) Encoders and decoders
  - b) Hamming codes.

Set S

c) 2

terms.

a) Cosine

c) Even

a) Another rectangle

c) Triangular

| Seat<br>No. |                                                                            |                                             |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Set P                       |
|-------------|----------------------------------------------------------------------------|---------------------------------------------|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| Т           | T.E. (Biomedical                                                           | Engineering)<br>SIGNALS                     | -                                  | · I) (CGPA) Exami                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nation, 2018                |
| -           | nd Date : Tuesday<br>: 10.00 a.m. to 1.0                                   |                                             |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Max. Marks: 70              |
|             | ŕ                                                                          | 30 minutes in carries one ma Answer MCQ     | Answer<br>ark.<br>V <b>Objecti</b> | ory. It should be so Book Page No. 3. It should be so Book Page No. 3. It was to be so Book Page No. 3. It was to be so Book Page No. 3. It was to be so Book Page No. 3. It was to be so Book Page No. 3. It was to be so Book Page No. 3. It was to be so Book Page No. 3. It was to be so Book Page No. 3. It was to be so Book Page No. 3. It was to be so Book Page No. 3. It was to be so Book Page No. 3. It was to be so Book Page No. 3. It was to be so Book Page No. 3. It was to be so Book Page No. 3. It was to be so Book Page No. 3. It was to be so Book Page No. 3. It was to be so Book Page No. 3. It was to be so Book Page No. 3. It was to be so Book Page No. 3. It was to be so Book Page No. 3. It was to be so Book Page No. 3. It was to be so Book Page No. 3. It was to be so Book Page No. 3. It was to be so Book Page No. 3. It was to be so Book Page No. 3. It was to be so Book Page No. 3. It was to be so Book Page No. 3. It was to be so Book Page No. 3. It was to be so Book Page No. 3. It was to be so Book Page No. 3. It was to be so Book Page No. 3. It was to be so Book Page No. 3. It was to be so Book Page No. 3. It was to be so Book Page No. 3. It was to be so Book Page No. 3. It was to be so Book Page No. 3. It was to be so Book Page No. 3. It was to be so Book Page No. 3. It was to be so Book Page No. 3. It was to be so Book Page No. 3. It was to be so Book Page No. 3. It was to be so Book Page No. 3. It was to be so Book Page No. 3. It was to be so Book Page No. 3. It was to be so Book Page No. 3. It was to be so Book Page No. 3. It was to be so Book Page No. 3. It was to be so Book Page No. 3. It was to be so Book Page No. 3. It was to be so Book Page No. 3. It was to be so Book Page No. 3. It was to be so Book Page No. 3. It was to be so Book Page No. 3. It was to be so Book Page No. 3. It was to be so Book Page No. 3. It was to be so Book Page No. 3. It was to be so Book Page No. 3. It was to be so Book Page No. 3. It was to be so Book Page No. 3. It was to be so Book Page No. 3. It was to be so Book Page No | Each question on Page No. 3 |
| Durati      | ion : 30 Minutes                                                           | MCQ/Object                                  | ive Type                           | Questions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Marks : 14                  |
| 1. C        | hoose the correct                                                          | answer:                                     |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (14×1=14)                   |
| 1           | ) The area under                                                           | the curve $\int_{-\infty}^{+\infty} \delta$ | (t)dt is                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |
|             | a) ∞<br>c) 0                                                               |                                             | ,                                  | Unity<br>Undefined                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                             |
| 2           | a) Given x(n) = a <sup> n </sup> ,<br>a) An energy sig<br>c) Neither a) no | gnal                                        | ,                                  | Power signal<br>Both a) and b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                             |
| 3           | <ul><li>The discrete-tim</li><li>a) 6</li></ul>                            | e signal x(n) =                             | (-1) <sup>n</sup> is p             | eriodic with fundam<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ental period                |

d) 0

b) Square

d) Sinc

b) Sine

d) Odd harmonics

5) The Fourier series of a real, even periodic signal will contain only \_\_\_\_\_\_

4) The autocorrelation of a rectangular pulse is \_\_\_\_\_ pulse.



- 6) Odd signal satisfies x(t) =
  - a) x(-t)

b) -x(-t)

c) -x(t + T/2)

- d) x(t + T/2)
- 7) The DTFS coefficients of a real and even periodic signal are
  - a) Real and odd

b) Imaginary and even

c) Real and even

- d) Imaginary and odd
- 8) Fourier transform of a d.c. signal with unity strength is
  - a) Zero

b) 1

c)  $2\pi\delta(w)$ 

- d) 2δ(w)
- 9) The DTFT is periodic with period
  - a) π

b)  $2\pi$ 

c)  $\pi/2$ 

- d)  $\pi/4$
- 10) Z transform converts convolution of time signals to
  - a) Addition

b) Multiplication

c) Subtraction

- d) Division
- 11) The step response of a LTI system when the impulse response h(n) is unit step u(n) is
  - a) n + 1

b) n

c) n-1

- d)  $n^2$
- 12) The z transform of  $\delta(n-m)$  is
  - a) z<sup>-n</sup>

b) z<sup>-m</sup>

c)  $\frac{1}{z-n}$ 

- d)  $\frac{1}{z-m}$
- 13) The fourier series representation are based on using
  - a) Constant coefficient
- b) Only cosine functions

c) Only sine functions

d) Orthogonal functions

- 14) Periodic signals are
  - a) x(t + T) = x(t)

b) x(t-T) = x(t)

c) x(n = mN) = x(n)

d) All the above



| Seat |  |
|------|--|
| No.  |  |

## T.E. (Biomedical Engineering) (Part – I) (CGPA) Examination, 2018 SIGNALS AND SYSTEM

Day and Date: Tuesday, 8-5-2018 Marks: 56

Time: 10.00 a.m. to 1.00 p.m.

#### SECTION - I

2. Attempt any 4 questions:

 $(4 \times 4 = 16)$ 

- 1) State and explain sampling theorem.
- 2) Define following terms with each example.
  - a) Time variant and time invariant system
  - b) Linear system and non-linear system.
- 3) The output of an LTI system in response to an input  $x(t) = e^{-2t} u(t)$  is  $y(t) = e^{-t} u(t)$ . Find the frequency response and impulse response of this system.
- 4) Show that the convolution of two odd function is an even function.
- 5) Find even and odd components of the signal  $x(t) = e^{-2t} \cos(t)$ .

3. Attempt any two questions:

 $(6 \times 2 = 12)$ 

- 1) Find the convolution of two sequences.
  - a)  $x(n) = e^{-n^2}$ , for all n and  $h(n) = 3n^2$  for all n.
  - b) x(n) = u(n 1) and  $h(n) = \alpha^n u(n 1)$ .
- 2) Draw the waveforms of the following signals.
  - a)  $x_1(t) = u(t + 2)$
  - b)  $x_2(t) = u(t-2)$
- 3) Determine whether following signals are power or energy signals or neither.
  - a)  $x(t) = A \sin t$ ,  $-\infty < t < +\infty$
  - b)  $x(t) = e^{-a|t|}, a > 0$
  - c) x(t) = A[u (t + a) u (t a)], a > 0.

### 

#### SECTION - II

4. Attempt any 4 questions:

 $(4 \times 4 = 16)$ 

- 1) Find the fourier transform of the signal g(t) defined by  $g(t) = te^{-at} u(t)$ .
- 2) Find the z transform and ROC of signal given

$$g(n) = a^{n/3}u\left(\frac{n}{3}\right) = \begin{cases} a^{n/3}, & n = 0, 3, 6, ... \\ 0, & \text{elsewhere} \end{cases}$$
 where  $|a| < 1$ .

- 3) Define and derive correlation property of z transform.
- 4) Prove periodicity property of Discrete Time Fourier Transform (DTFT).
- 5) State and explain Parseval's theorem in detail.
- 5. Attempt any two questions:

 $(2\times6=12)$ 

1) Determine the unilateral z transform of the following signals:

a) 
$$x(n) = \{1, 2, 5, 4, 0, 3\}$$

$$x(n) = \{1, 2, 5, 4, 0, 3\}$$

b) 
$$x(n) = \{1, 2, 5, 4, 0, 3\}$$
  
 $\uparrow$   
c)  $x(n) = \{0, 0, 1, 2, 5, 4, 0, 3\}$ 

- 2) Define following properties of Discrete Fourier Transform (DFT)
  - a) Linearity
  - b) Time reversal
  - c) Frequency shifting.
- 3) Determine the z transform and pole-zero plot for the given signal,

$$x(n) = \begin{cases} a^n, & 0 \le n \le N-1 \\ 0, & \text{elsewhere} \end{cases} \text{ where } a > 0.$$

| Seat |  |
|------|--|
| Seat |  |
| Na   |  |
| No.  |  |

Set Q

Max. Marks: 70

### T.E. (Biomedical Engineering) (Part – I) (CGPA) Examination, 2018 SIGNALS AND SYSTEM

Day and Date: Tuesday, 8-5-2018

Time: 10.00 a.m. to 1.00 p.m.

- Instructions: 1) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book Page No. 3. Each question carries one mark.
  - 2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

| of                        | Page.           |               | ,           | ` | , .        |
|---------------------------|-----------------|---------------|-------------|---|------------|
| Duration: 30 Minutes      | MCQ/Object      | ive Type Q    | uestions    |   | Marks : 14 |
| Baration : 00 Miliates    |                 |               |             |   | Marks: 14  |
| 1. Choose the correct and | swer:           |               |             |   | (14×1=14)  |
| 1) Fourier transform of   | of a d.c. signa | al with unity | strength is |   |            |
| a) Zero                   |                 | b) 1          |             |   |            |
| c) 2πδ(w)                 |                 | d) 2δ         | (w)         |   |            |
| 2) The DTFT is period     | dic with perio  | od            |             |   |            |
|                           |                 |               |             |   |            |

- a)  $\pi$  b)  $2\pi$  c)  $\pi/2$  d)  $\pi/4$
- 3) Z transform converts convolution of time signals to
  - a) Additionb) Multiplicationc) Subtractiond) Division
- 4) The step response of a LTI system when the impulse response h(n) is unit step u(n) is
  - a) n + 1 b) n c) n 1 d)  $n^2$
- 5) The z transform of  $\delta(n-m)$  is
  - a)  $z^{-n}$  b)  $z^{-m}$
  - c)  $\frac{1}{z-n}$  d)  $\frac{1}{z-n}$



| 6)           | The fourier series representation are                              | based on using                      |
|--------------|--------------------------------------------------------------------|-------------------------------------|
|              | a) Constant coefficient                                            | b) Only cosine functions            |
|              | c) Only sine functions                                             | d) Orthogonal functions             |
| 7)           | Periodic signals are                                               |                                     |
| ŕ            | a) $x(t + T) = x(t)$                                               | b) $x(t-T) = x(t)$                  |
|              | c) $x(n = mN) = x(n)$                                              | d) All the above                    |
| 8)           | The area under the curve $\int_{-\infty}^{+\infty} \delta(t) dt$ i | s                                   |
|              | a) ∞                                                               | b) Unity                            |
|              | c) 0                                                               | d) Undefined                        |
| 9)           | Given $x(n) = a^{ n },  a  < 1$ is                                 |                                     |
| ,            | a) An energy signal                                                | b) Power signal                     |
|              | c) Neither a) nor b)                                               | d) Both a) and b)                   |
| 10)          | The discrete-time signal $x(n) = (-1)^n$                           | is periodic with fundamental period |
| ŕ            | a) 6                                                               | b) 4                                |
|              | c) 2                                                               | d) 0                                |
| 11)          | The autocorrelation of a rectangular                               | pulse is pulse.                     |
|              | a) Another rectangle                                               | b) Square                           |
|              | c) Triangular                                                      | d) Sinc                             |
| 12)          | The Fourier series of a real, even periterms.                      | odic signal will contain only       |
|              | a) Cosine                                                          | b) Sine                             |
|              | c) Even                                                            | d) Odd harmonics                    |
| 13)          | Odd signal satisfies x(t) =                                        | a, caa namenee                      |
| 10)          | a) $x(-t)$                                                         | b) $-x(-t)$                         |
|              | c) $-x(t + T/2)$                                                   | d) $x(t + T/2)$                     |
| 1/1          | ,                                                                  | , , ,                               |
| · + <i>)</i> | The DTFS coefficients of a real and a) Real and odd                | b) Imaginary and even               |
|              | c) Real and even                                                   | d) Imaginary and odd                |
|              | o, Hoar and over                                                   | a, imaginary and odd                |
|              |                                                                    |                                     |



|      | t |
|------|---|
| Seat |   |
| No.  |   |

## T.E. (Biomedical Engineering) (Part – I) (CGPA) Examination, 2018 SIGNALS AND SYSTEM

Day and Date: Tuesday, 8-5-2018 Marks: 56

Time: 10.00 a.m. to 1.00 p.m.

#### SECTION - I

2. Attempt any 4 questions:

 $(4 \times 4 = 16)$ 

- 1) State and explain sampling theorem.
- 2) Define following terms with each example.
  - a) Time variant and time invariant system
  - b) Linear system and non-linear system.
- 3) The output of an LTI system in response to an input  $x(t) = e^{-2t} u(t)$  is  $y(t) = e^{-t} u(t)$ . Find the frequency response and impulse response of this system.
- 4) Show that the convolution of two odd function is an even function.
- 5) Find even and odd components of the signal  $x(t) = e^{-2t} \cos(t)$ .

3. Attempt any two questions:

 $(6 \times 2 = 12)$ 

- 1) Find the convolution of two sequences.
  - a)  $x(n) = e^{-n^2}$ , for all n and  $h(n) = 3n^2$  for all n.
  - b) x(n) = u(n 1) and  $h(n) = \alpha^n u(n 1)$ .
- 2) Draw the waveforms of the following signals.
  - a)  $x_1(t) = u(t + 2)$
  - b)  $x_2(t) = u(t-2)$
- 3) Determine whether following signals are power or energy signals or neither.
  - a)  $x(t) = A \sin t$ ,  $-\infty < t < +\infty$
  - b)  $x(t) = e^{-a|t|}, a > 0$
  - c) x(t) = A[u (t + a) u (t a)], a > 0.

### 

#### SECTION - II

4. Attempt any 4 questions:

 $(4 \times 4 = 16)$ 

- 1) Find the fourier transform of the signal g(t) defined by  $g(t) = te^{-at} u(t)$ .
- 2) Find the z transform and ROC of signal given

$$g(n) = a^{n/3}u\left(\frac{n}{3}\right) = \begin{cases} a^{n/3}, & n = 0, 3, 6, ... \\ 0, & \text{elsewhere} \end{cases}$$
 where  $|a| < 1$ .

- 3) Define and derive correlation property of z transform.
- 4) Prove periodicity property of Discrete Time Fourier Transform (DTFT).
- 5) State and explain Parseval's theorem in detail.
- 5. Attempt any two questions:

 $(2\times6=12)$ 

1) Determine the unilateral z transform of the following signals:

a) 
$$x(n) = \{1, 2, 5, 4, 0, 3\}$$

$$1) = \{1, 2, 5, 4, 0, 3\}$$

b) 
$$x(n) = \{1, 2, 5, 4, 0, 3\}$$
  
 $\uparrow$   
c)  $x(n) = \{0, 0, 1, 2, 5, 4, 0, 3\}$ 

- 2) Define following properties of Discrete Fourier Transform (DFT)
  - a) Linearity
  - b) Time reversal
  - c) Frequency shifting.
- 3) Determine the z transform and pole-zero plot for the given signal,

$$x(n) = \begin{cases} a^n, & 0 \le n \le N-1 \\ 0, & \text{elsewhere} \end{cases} \text{ where } a > 0.$$

| Seat |  |
|------|--|
| No.  |  |

Set R

# T.E. (Biomedical Engineering) (Part – I) (CGPA) Examination, 2018 SIGNALS AND SYSTEM

Day and Date: Tuesday, 8-5-2018 Max. Marks: 70

Time: 10.00 a.m. to 1.00 p.m.

c)  $\pi/2$ 

Instructions: 1) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book Page No. 3. Each question carries one mark.

2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

| -                                                               | ctive Type Questions                   | Mada da   |
|-----------------------------------------------------------------|----------------------------------------|-----------|
| Duration: 30 Minutes                                            |                                        | Marks: 14 |
| 1. Choose the correct answer:                                   |                                        | (14×1=14) |
| <ol> <li>The Fourier series of a real, ev<br/>terms.</li> </ol> | en periodic signal will contain only _ |           |
| a) Cosine                                                       | b) Sine                                |           |
| c) Even                                                         | d) Odd harmonics                       |           |
| 2) Odd signal satisfies x(t) =                                  |                                        |           |
| a) x(-t)                                                        | b) $-x(-t)$                            |           |
| c) $- x (t + T/2)$                                              | d) $x(t + T/2)$                        |           |
| 3) The DTFS coefficients of a re-                               | al and even periodic signal are        |           |
| a) Real and odd                                                 | b) Imaginary and even                  |           |
| c) Real and even                                                | d) Imaginary and odd                   |           |
| 4) Fourier transform of a d.c. sig                              | nal with unity strength is             |           |
| a) Zero                                                         | b) 1                                   |           |
| c) 2πδ(w)                                                       | d) 2δ(w)                               |           |
| 5) The DTFT is periodic with per                                | riod                                   |           |
| a) π                                                            | b) 2π                                  |           |

d)  $\pi/4$ 

| 6)  | Z transform converts convolution of t                              | time | e signals to                        |
|-----|--------------------------------------------------------------------|------|-------------------------------------|
|     | a) Addition                                                        | b)   | Multiplication                      |
|     | c) Subtraction                                                     | d)   | Division                            |
| 7)  | The step response of a LTI system wastep u(n) is                   | /hei | n the impulse response h(n) is unit |
|     | a) n + 1                                                           | b)   | n                                   |
|     | c) n – 1                                                           | d)   | n <sup>2</sup>                      |
| 8)  | The z transform of $\delta(n-m)$ is                                |      |                                     |
|     | a) z <sup>-n</sup>                                                 | b)   | Z <sup>-m</sup>                     |
|     | c) $\frac{1}{z-n}$                                                 | d)   | $\frac{1}{z-m}$                     |
| 9)  | The fourier series representation are                              | ba   | sed on using                        |
| ,   | a) Constant coefficient                                            |      | Only cosine functions               |
|     | c) Only sine functions                                             | -    | Orthogonal functions                |
| 10) | Periodic signals are                                               |      |                                     |
| ,   | a) $x(t + T) = x(t)$                                               | b)   | x(t-T) = x(t)                       |
|     | c) $x(n = mN) = x(n)$                                              | d)   | All the above                       |
| 11) | The area under the curve $\int_{-\infty}^{+\infty} \delta(t) dt$ i | is   |                                     |
|     | a) ∞                                                               | b)   | Unity                               |
|     | c) 0                                                               | d)   | Undefined                           |
| 12) | Given $x(n) = a^{ n },  a  < 1$ is                                 |      |                                     |
|     | a) An energy signal                                                | b)   | Power signal                        |
|     | c) Neither a) nor b)                                               | d)   | Both a) and b)                      |
| 13) | The discrete-time signal $x(n) = (-1)^n$                           | is p | periodic with fundamental period    |
|     | a) 6                                                               | b)   | 4                                   |
|     | c) 2                                                               | d)   | 0                                   |
| 14) | The autocorrelation of a rectangular                               | pul  | se is pulse.                        |
|     | a) Another rectangle                                               | b)   | Square                              |
|     | c) Triangular                                                      | d)   | Sinc                                |
|     |                                                                    |      |                                     |
|     |                                                                    |      |                                     |



| Seat |  |
|------|--|
| No.  |  |

## T.E. (Biomedical Engineering) (Part – I) (CGPA) Examination, 2018 SIGNALS AND SYSTEM

Day and Date: Tuesday, 8-5-2018 Marks: 56

Time: 10.00 a.m. to 1.00 p.m.

#### SECTION - I

2. Attempt any 4 questions:

 $(4 \times 4 = 16)$ 

- 1) State and explain sampling theorem.
- 2) Define following terms with each example.
  - a) Time variant and time invariant system
  - b) Linear system and non-linear system.
- 3) The output of an LTI system in response to an input  $x(t) = e^{-2t} u(t)$  is  $y(t) = e^{-t} u(t)$ . Find the frequency response and impulse response of this system.
- 4) Show that the convolution of two odd function is an even function.
- 5) Find even and odd components of the signal  $x(t) = e^{-2t} \cos(t)$ .

3. Attempt any two questions:

 $(6 \times 2 = 12)$ 

- 1) Find the convolution of two sequences.
  - a)  $x(n) = e^{-n^2}$ , for all n and  $h(n) = 3n^2$  for all n.
  - b) x(n) = u(n 1) and  $h(n) = \alpha^n u(n 1)$ .
- 2) Draw the waveforms of the following signals.
  - a)  $x_1(t) = u(t + 2)$
  - b)  $x_2(t) = u(t-2)$
- 3) Determine whether following signals are power or energy signals or neither.
  - a)  $x(t) = A \sin t$ ,  $-\infty < t < +\infty$
  - b)  $x(t) = e^{-a|t|}, a > 0$
  - c) x(t) = A[u (t + a) u (t a)], a > 0.

### 

#### SECTION - II

4. Attempt any 4 questions:

 $(4 \times 4 = 16)$ 

- 1) Find the fourier transform of the signal g(t) defined by  $g(t) = te^{-at} u(t)$ .
- 2) Find the z transform and ROC of signal given

$$g(n) = a^{n/3}u\left(\frac{n}{3}\right) = \begin{cases} a^{n/3}, & n = 0, 3, 6, ... \\ 0, & \text{elsewhere} \end{cases}$$
 where  $|a| < 1$ .

- 3) Define and derive correlation property of z transform.
- 4) Prove periodicity property of Discrete Time Fourier Transform (DTFT).
- 5) State and explain Parseval's theorem in detail.
- 5. Attempt any two questions:

 $(2\times6=12)$ 

1) Determine the unilateral z transform of the following signals:

a) 
$$x(n) = \{1, 2, 5, 4, 0, 3\}$$

b) 
$$x(n) = \{1, 2, 5, 4, 0, 3\}$$

b) 
$$x(n) = \{1, 2, 5, 4, 0, 3\}$$
  
 $\uparrow$   
c)  $x(n) = \{0, 0, 1, 2, 5, 4, 0, 3\}$ 

- 2) Define following properties of Discrete Fourier Transform (DFT)
  - a) Linearity
  - b) Time reversal
  - c) Frequency shifting.
- 3) Determine the z transform and pole-zero plot for the given signal,

$$x(n) = \begin{cases} a^n, & 0 \le n \le N-1 \\ 0, & \text{elsewhere} \end{cases} \text{ where } a > 0.$$

| Seat |  |
|------|--|
| No.  |  |

Set S

Max. Marks: 70

# T.E. (Biomedical Engineering) (Part – I) (CGPA) Examination, 2018 SIGNALS AND SYSTEM

Day and Date: Tuesday, 8-5-2018

Time: 10.00 a.m. to 1.00 p.m.

Instructions: 1) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book Page No. 3. Each question carries one mark.

2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

### **MCQ/Objective Type Questions**

Duration: 30 Minutes Marks: 14

1. Choose the correct answer:

 $(14 \times 1 = 14)$ 

- 1) Z transform converts convolution of time signals to
  - a) Addition

b) Multiplication

c) Subtraction

- d) Division
- 2) The step response of a LTI system when the impulse response h(n) is unit step u(n) is
  - a) n + 1

b) n

c) n-1

- d) n<sup>2</sup>
- 3) The z transform of  $\delta(n-m)$  is
  - a) z<sup>-n</sup>

b) z<sup>-m</sup>

c)  $\frac{1}{z-n}$ 

- d)  $\frac{1}{z-m}$
- 4) The fourier series representation are based on using
  - a) Constant coefficient
- b) Only cosine functions

c) Only sine functions

d) Orthogonal functions

- 5) Periodic signals are
  - a) x(t + T) = x(t)

b) x(t-T) = x(t)

c) x(n = mN) = x(n)

d) All the above



| 6)  | The area under the curve $\int_{-\infty}^{+\infty} \delta(t) dt$ is                  | S                                                                   |
|-----|--------------------------------------------------------------------------------------|---------------------------------------------------------------------|
|     | a) ∞<br>c) 0                                                                         | <ul><li>b) Unity</li><li>d) Undefined</li></ul>                     |
| 7)  | Given $x(n) = a^{ n }$ , $ a  < 1$ is<br>a) An energy signal<br>c) Neither a) nor b) | <ul><li>b) Power signal</li><li>d) Both a) and b)</li></ul>         |
| 8)  | The discrete-time signal $x(n) = (-1)^n$<br>a) 6<br>c) 2                             | is periodic with fundamental period b) 4 d) 0                       |
| 9)  | The autocorrelation of a rectangular a) Another rectangle c) Triangular              | pulse is pulse. b) Square d) Sinc                                   |
| 10) | The Fourier series of a real, even periterms.  a) Cosine c) Even                     | odic signal will contain only  b) Sine d) Odd harmonics             |
| 11) | Odd signal satisfies $x(t) = a$<br>a) $x(-t)$<br>c) $-x(t + T/2)$                    | b) -x (-t)<br>d) x(t + T/2)                                         |
| 12) | The DTFS coefficients of a real and a) Real and odd c) Real and even                 | even periodic signal are b) Imaginary and even d) Imaginary and odd |
| 13) | Fourier transform of a d.c. signal with a) Zero c) $2\pi\delta(w)$                   | n unity strength is<br>b) 1<br>d) 2δ(w)                             |
| 14) | The DTFT is periodic with period a) $\pi$ c) $\pi/2$                                 | b) $2\pi$ d) $\pi/4$                                                |



| Seat |  |
|------|--|
| No.  |  |

## T.E. (Biomedical Engineering) (Part – I) (CGPA) Examination, 2018 SIGNALS AND SYSTEM

Day and Date: Tuesday, 8-5-2018 Marks: 56

Time: 10.00 a.m. to 1.00 p.m.

#### SECTION - I

2. Attempt any 4 questions:

 $(4 \times 4 = 16)$ 

- 1) State and explain sampling theorem.
- 2) Define following terms with each example.
  - a) Time variant and time invariant system
  - b) Linear system and non-linear system.
- 3) The output of an LTI system in response to an input  $x(t) = e^{-2t} u(t)$  is  $y(t) = e^{-t} u(t)$ . Find the frequency response and impulse response of this system.
- 4) Show that the convolution of two odd function is an even function.
- 5) Find even and odd components of the signal  $x(t) = e^{-2t} \cos(t)$ .

3. Attempt any two questions:

 $(6 \times 2 = 12)$ 

- 1) Find the convolution of two sequences.
  - a)  $x(n) = e^{-n^2}$ , for all n and  $h(n) = 3n^2$  for all n.
  - b) x(n) = u(n 1) and  $h(n) = \alpha^n u(n 1)$ .
- 2) Draw the waveforms of the following signals.
  - a)  $x_1(t) = u(t + 2)$
  - b)  $x_2(t) = u(t-2)$
- 3) Determine whether following signals are power or energy signals or neither.
  - a)  $x(t) = A \sin t$ ,  $-\infty < t < +\infty$
  - b)  $x(t) = e^{-a|t|}, a > 0$
  - c) x(t) = A[u(t + a) u(t a)], a > 0.

### 

#### SECTION - II

4. Attempt any 4 questions:

 $(4 \times 4 = 16)$ 

- 1) Find the fourier transform of the signal g(t) defined by  $g(t) = te^{-at} u(t)$ .
- 2) Find the z transform and ROC of signal given

$$g(n) = a^{n/3}u\left(\frac{n}{3}\right) = \begin{cases} a^{n/3}, & n = 0, 3, 6, ... \\ 0, & \text{elsewhere} \end{cases}$$
 where  $|a| < 1$ .

- 3) Define and derive correlation property of z transform.
- 4) Prove periodicity property of Discrete Time Fourier Transform (DTFT).
- 5) State and explain Parseval's theorem in detail.
- 5. Attempt any two questions:

 $(2\times6=12)$ 

1) Determine the unilateral z transform of the following signals:

a) 
$$x(n) = \{1, 2, 5, 4, 0, 3\}$$

$$x(n) = \{1, 2, 5, 4, 0, 3\}$$

b) 
$$x(n) = \{1, 2, 5, 4, 0, 3\}$$
  
 $\uparrow$   
c)  $x(n) = \{0, 0, 1, 2, 5, 4, 0, 3\}$ 

- 2) Define following properties of Discrete Fourier Transform (DFT)
  - a) Linearity
  - b) Time reversal
  - c) Frequency shifting.
- 3) Determine the z transform and pole-zero plot for the given signal,

$$x(n) = \begin{cases} a^n, & 0 \le n \le N-1 \\ 0, & \text{elsewhere} \end{cases} \text{ where } a > 0.$$

## **SLR-TC - 455**

| No. |
|-----|
|-----|

## T.E. (Biomedical Engg.) (Part II) (CGPA) Examination, 2018 BIOMEDICAL INSTRUMENTATION – II

| Day and Date : Monday, 14-5-2018 | Total Marks: 70 |
|----------------------------------|-----------------|
|----------------------------------|-----------------|

Time: 2.30 p.m. to 5.30 p.m.

- Instructions: 1) Q. No. 1 is compulsory. It should be solved in first
  30 minutes in Answer Book Page No. 3. Each question
  carries one mark.
  - 2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.
  - 3) Figures to the **right** indicate **full** marks.

|     |                                   | 0 , 0 , 0 , 0 , 0   | . ype ddeediene      | •                |             |
|-----|-----------------------------------|---------------------|----------------------|------------------|-------------|
| Dur | ation: 30 Minutes                 |                     |                      |                  | Marks: 14   |
| 1.  | Fill in the blanks :              |                     |                      |                  | (1×14=14)   |
|     | 1) a to beat.                     | re designed to mea  | sure and record fo   | oetal heart rate | on beat     |
|     | a) Cardiotocogi                   | aph                 | b) GSR               |                  |             |
|     | c) Doppler                        |                     | d) Oscillomet        | ers              |             |
|     | 2) Range of thresh                | old of perception o | of electric shock is | s about          | mA.         |
|     | a) 2                              | b) 4                | c) 3                 | d) 1             |             |
|     | 3) sh with the electric           | •                   | by the subject by    | an accidenta     | l contact   |
|     | a) Micro                          | b) Macro            | c) Minute            | d) Gross         |             |
|     | 4) The respiratory                | cycle is accomplis  | hed by               | _ in the thorac  | cic volume. |
|     | a) air                            | b) volume           | c) capacity          | d) change        | S           |
|     | 5) The most promi eyes are closed | •                   | attern of an awake   | e, relaxed adu   | It whose    |
|     | a) alpha                          | b) theta            | c) delta             | d) beta          |             |

| 6)  | A telemedicine prog                         | gram consists of a | ı 2 way             |                    |        |
|-----|---------------------------------------------|--------------------|---------------------|--------------------|--------|
|     | a) communication                            | b) analysis        | c) categories       | d) conduction      |        |
| 7)  | Bioelectric potential                       | s are generated a  | at a le             | evel.              |        |
|     | a) muscular                                 | b) cellular        | c) refractory       | d) depolarization  | 'n     |
| 8)  | Motion artifact is red                      | duced to a negligi | ble magnitude by    | /ab                | rasion |
|     | a) motion                                   | b) skin            | c) gel              | d) membrane        |        |
| 9)  | The me degree of absolute                   |                    |                     | sed when the high  | est    |
|     | a) invasive                                 | b) polarized       | c) direct           | d) indirect        |        |
| 10) | The Rheographic m the cuff.                 | ethod utilizes     | elec                | ctrodes for attach | ing    |
|     | a) 2                                        | b) 3               | c) 4                | d) 5               |        |
| 11) | The phonocardiograconnected with the        | •                  |                     | rding the          |        |
|     | a) conduction                               | b) indirect B.P.   | c) pumping          | d) circulation     |        |
| 12) | The first heart soun                        | d is               | _ in pitch than sed | cond heart sound   | l.     |
|     | a) lower                                    | b) medium          | c) very low         | d) higher          |        |
| 13) | If an external stimuluits response is calle |                    | -                   | 9                  |        |
|     | a) spinal cord                              | b) midbrain        | c) brain            | d) ear             |        |
| 14) | Apnoea is theheart and circulation          |                    | eathing that prece  | ede the arrest of  | the    |
|     | a) pumping                                  | b) conduction      | c) cessation        | d) circulation     |        |
|     |                                             |                    |                     |                    |        |



| Seat |  |
|------|--|
| No.  |  |

## T.E. (Biomedical Engg.) (Part II) (CGPA) Examination, 2018 BIOMEDICAL INSTRUMENTATION – II

Day and Date: Monday, 14-5-2018

Marks: 56

Time: 2.30 p.m to 5.30 p.m.

**Instruction**: Figures to the **right** indicate **full** marks.

#### SECTION - I

#### 2. Attempt any four:

 $(4 \times 4 = 16)$ 

- 1) Draw and explain process of generation of pacemaker and muscle action potential.
- 2) Draw EEG waveform recorded for 10 20 configurations and label it.
- 3) Explain the generation of heart sound and mention each sound's significance.
- 4) Explain designing criteria of instrumentation amplifier for EEG and ERG recording techniques.
- 5) Define blood pressure. Explain any one B.P. measurement technique using indirect method.

## 3. Attempt **any two**:

 $(2 \times 6 = 12)$ 

- 1) Explain 10 20 electrode placements with the help of neat diagram and also explain the working of EEG machine.
- 2) Explain using suitable diagram of 12 lead ECG recording systems and define Einthoven's triangle.
- Explain the technique used for measurement of body temperature with suitable diagram.

#### SECTION - II

### 4. Attempt any four:

 $(4 \times 4 = 16)$ 

- 1) Explain working of fetal scalp pH measurement with necessary diagram.
- 2) Define micro, gross and leakage current, explain its occurrence.



- 3) Describe working of ECG transmitter with necessary diagram.
- 4) Explain working of cardiotocograph in detail.
- 5) Explain working of EEG biofeed system with necessary diagram.

## 5. Attempt any two:

- 1) Explain various patient grounding techniques and precautions with necessary diagram.
- 2) Explain working of ambulatory monitoring system.
- 3) Differentiate between working, construction and applications of baby incubator and infant warmer.

| <br> | <br> |  |
|------|------|--|

## **SLR-TC - 455**

|      | _   |   |
|------|-----|---|
| Seat | Set |   |
| No.  |     | W |

## T.E. (Biomedical Engg.) (Part II) (CGPA) Examination, 2018 BIOMEDICAL INSTRUMENTATION – II

Day and Date: Monday, 14-5-2018 Total Marks: 70

Time: 2.30 p.m to 5.30 p.m.

- Instructions: 1) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book Page No. 3. Each question carries one mark.
  - 2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.
  - 3) Figures to the right indicate full marks.

| Dura | atio | n : 30 Minutes                       |                    |                     |                | Marks : 14  |
|------|------|--------------------------------------|--------------------|---------------------|----------------|-------------|
| 1.   | Fil  | l in the blanks :                    |                    |                     |                | (1×14=14)   |
|      | 1)   | Motion artifact is red               | duced to a negligi | ble magnitude by    | <i>'</i>       | _ abrasion. |
|      |      | a) motion                            | b) skin            | c) gel              | d) membra      | ine         |
|      | 2)   | The medicate of absolute a           |                    |                     | sed when the   | highest     |
|      |      | a) invasive                          | b) polarized       | c) direct           | d) indirect    |             |
|      | 3)   | The Rheographic m the cuff.          | ethod utilizes     | elec                | ctrodes for at | ttaching    |
|      |      | a) 2                                 | b) 3               | c) 4                | d) 5           |             |
|      | 4)   | The phonocardiograconnected with the | •                  |                     | rding the      |             |
|      |      | a) conduction                        | b) indirect B.P.   | c) pumping          | d) circulation | on          |
|      | 5)   | The first heart soun                 | d is               | _ in pitch than sed | cond heart s   | ound.       |
|      |      | a) lower                             | b) medium          | c) very low         | d) higher      |             |

| 6)  | If an external stimuli<br>its response is called |                    | •                   | e                       |  |
|-----|--------------------------------------------------|--------------------|---------------------|-------------------------|--|
|     | a) spinal cord                                   | b) midbrain        | c) brain            | d) ear                  |  |
| 7)  | Apnoea is theheart and circulation               | of bren.           | eathing that prece  | ede the arrest of the   |  |
|     | a) pumping                                       | b) conduction      | c) cessation        | d) circulation          |  |
| 8)  | are d to beat.                                   | esigned to measu   | re and record foe   | tal heart rate on beat  |  |
|     | a) Cardiotocograph                               | 1                  | b) GSR              |                         |  |
|     | c) Doppler                                       |                    | d) Oscillometer     | S                       |  |
| 9)  | Range of threshold                               | of perception of e | electric shock is a | aboutmA.                |  |
|     | a) 2                                             | b) 4               | c) 3                | d) 1                    |  |
| 10) | shock with the electric wir                      |                    | y the subject by a  | n accidental contact    |  |
|     | a) Micro                                         | b) Macro           | c) Minute           | d) Gross                |  |
| 11) | The respiratory cyc                              | le is accomplishe  | d by                | in the thoracic volume. |  |
|     | a) air                                           | b) volume          | c) capacity         | d) changes              |  |
| 12) | The most prominent eyes are closed is _          | •                  | ern of an awake,    | relaxed adult whose     |  |
|     | a) alpha                                         | b) theta           | c) delta            | d) beta                 |  |
| 13) | A telemedicine program consists of a 2 way       |                    |                     |                         |  |
|     | a) communication                                 | b) analysis        | c) categories       | d) conduction           |  |
| 14) | Bioelectric potential                            | ls are generated a | at a le             | evel.                   |  |
|     | a) muscular                                      | b) cellular        | c) refractory       | d) depolarization       |  |



| Seat |  |
|------|--|
| No.  |  |

## T.E. (Biomedical Engg.) (Part II) (CGPA) Examination, 2018 BIOMEDICAL INSTRUMENTATION – II

Day and Date: Monday, 14-5-2018

Marks : 56

Time: 2.30 p.m to 5.30 p.m.

**Instruction**: Figures to the **right** indicate **full** marks.

#### SECTION - I

#### 2. Attempt any four:

 $(4 \times 4 = 16)$ 

- 1) Draw and explain process of generation of pacemaker and muscle action potential.
- 2) Draw EEG waveform recorded for 10 20 configurations and label it.
- 3) Explain the generation of heart sound and mention each sound's significance.
- 4) Explain designing criteria of instrumentation amplifier for EEG and ERG recording techniques.
- 5) Define blood pressure. Explain any one B.P. measurement technique using indirect method.

## 3. Attempt **any two**:

 $(2\times6=12)$ 

- 1) Explain 10 20 electrode placements with the help of neat diagram and also explain the working of EEG machine.
- 2) Explain using suitable diagram of 12 lead ECG recording systems and define Einthoven's triangle.
- 3) Explain the technique used for measurement of body temperature with suitable diagram.

#### SECTION - II

## 4. Attempt any four:

 $(4 \times 4 = 16)$ 

- 1) Explain working of fetal scalp pH measurement with necessary diagram.
- 2) Define micro, gross and leakage current, explain its occurrence.

Set Q



- 3) Describe working of ECG transmitter with necessary diagram.
- 4) Explain working of cardiotocograph in detail.
- 5) Explain working of EEG biofeed system with necessary diagram.

## 5. Attempt any two:

- 1) Explain various patient grounding techniques and precautions with necessary diagram.
- 2) Explain working of ambulatory monitoring system.
- 3) Differentiate between working, construction and applications of baby incubator and infant warmer.



Seat No.

## **SLR-TC - 455**

|     | _ |  |
|-----|---|--|
| Set | ] |  |
|     |   |  |

## T.E. (Biomedical Engg.) (Part II) (CGPA) Examination, 2018 BIOMEDICAL INSTRUMENTATION – II

Day and Date: Monday, 14-5-2018 Total Marks: 70

Time: 2.30 p.m to 5.30 p.m.

- Instructions: 1) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book Page No. 3. Each question carries one mark.
  - 2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.
  - 3) Figures to the right indicate full marks.

| Dura | atio | n : 30 Minutes                          |                    |      |                |      | Marks: 14        |
|------|------|-----------------------------------------|--------------------|------|----------------|------|------------------|
| 1.   | Fil  | I in the blanks :                       |                    |      |                |      | (1×14=14)        |
|      | 1)   | The most prominent eyes are closed is _ | •                  | rn   | of an awake, r | ela  | xed adult whose  |
|      |      | a) alpha                                | b) theta           | c)   | delta          | d)   | beta             |
|      | 2)   | A telemedicine prog                     | gram consists of a | 2    | way            |      |                  |
|      |      | a) communication                        | b) analysis        | c)   | categories     | d)   | conduction       |
|      | 3)   | Bioelectric potential                   | s are generated a  | ıt a | le             | vel. |                  |
|      |      | a) muscular                             | b) cellular        | c)   | refractory     | d)   | depolarization   |
|      | 4)   | Motion artifact is re-                  | duced to a negligi | ble  | magnitude by   |      | abrasion.        |
|      |      | a) motion                               | b) skin            | c)   | gel            | d)   | membrane         |
|      | 5)   | The medegree of absolute                | •                  |      |                | ed   | when the highest |
|      |      | a) invasive                             | b) polarized       | c)   | direct         | d)   | indirect         |

| 6)  | The Rheographic m the cuff.                 | ethod utilizes     | elec                                            | ctrodes for attaching  |
|-----|---------------------------------------------|--------------------|-------------------------------------------------|------------------------|
|     | a) 2                                        | b) 3               | c) 4                                            | d) 5                   |
| 7)  | The phonocardiograconnected with the        | •                  |                                                 | rding the              |
|     | a) conduction                               | b) indirect B.P.   | c) pumping                                      | d) circulation         |
| 8)  | The first heart soun                        | d is               | $_{\scriptscriptstyle \perp}$ in pitch than sec | cond heart sound.      |
|     | a) lower                                    | b) medium          | c) very low                                     | d) higher              |
| 9)  | If an external stimuluits response is calle |                    | -                                               | 9                      |
|     | a) spinal cord                              | b) midbrain        | c) brain                                        | d) ear                 |
| 10) | Apnoea is theheart and circulation          |                    | eathing that prece                              | ede the arrest of the  |
|     | a) pumping                                  | b) conduction      | c) cessation                                    | d) circulation         |
| 11) | are de                                      | esigned to measu   | re and record foet                              | al heart rate on beat  |
|     | to beat.                                    |                    |                                                 |                        |
|     | a) Cardiotocograph                          | l                  | •                                               |                        |
|     | c) Doppler                                  |                    | d) Oscillometers                                | 5                      |
| 12) | Range of threshold                          | of perception of e | electric shock is a                             | boutmA.                |
|     | a) 2                                        | b) 4               | c) 3                                            | d) 1                   |
| 13) | shock with the electric wiri                |                    | the subject by a                                | n accidental contact   |
|     | a) Micro                                    | b) Macro           | c) Minute                                       | d) Gross               |
| 14) | The respiratory cycl                        | e is accomplished  | d by i                                          | n the thoracic volume. |
|     | a) air                                      | b) volume          | c) capacity                                     | d) changes             |
|     |                                             |                    |                                                 |                        |



| Seat |  |
|------|--|
| No.  |  |

## T.E. (Biomedical Engg.) (Part II) (CGPA) Examination, 2018 BIOMEDICAL INSTRUMENTATION – II

Day and Date: Monday, 14-5-2018

Marks: 56

Time: 2.30 p.m to 5.30 p.m.

**Instruction**: Figures to the **right** indicate **full** marks.

#### SECTION - I

#### 2. Attempt any four:

 $(4 \times 4 = 16)$ 

- 1) Draw and explain process of generation of pacemaker and muscle action potential.
- 2) Draw EEG waveform recorded for 10 20 configurations and label it.
- 3) Explain the generation of heart sound and mention each sound's significance.
- 4) Explain designing criteria of instrumentation amplifier for EEG and ERG recording techniques.
- 5) Define blood pressure. Explain any one B.P. measurement technique using indirect method.

## 3. Attempt **any two**:

 $(2 \times 6 = 12)$ 

- 1) Explain 10 20 electrode placements with the help of neat diagram and also explain the working of EEG machine.
- 2) Explain using suitable diagram of 12 lead ECG recording systems and define Einthoven's triangle.
- Explain the technique used for measurement of body temperature with suitable diagram.

#### SECTION - II

### 4. Attempt any four:

 $(4 \times 4 = 16)$ 

- 1) Explain working of fetal scalp pH measurement with necessary diagram.
- 2) Define micro, gross and leakage current, explain its occurrence.

Set R



- 3) Describe working of ECG transmitter with necessary diagram.
- 4) Explain working of cardiotocograph in detail.
- 5) Explain working of EEG biofeed system with necessary diagram.

## 5. Attempt any two:

- 1) Explain various patient grounding techniques and precautions with necessary diagram.
- 2) Explain working of ambulatory monitoring system.
- 3) Differentiate between working, construction and applications of baby incubator and infant warmer.

| <br> |  |
|------|--|

## **SLR-TC - 455**

| Seat Seat |
|-----------|
| No.       |

## T.E. (Biomedical Engg.) (Part II) (CGPA) Examination, 2018 BIOMEDICAL INSTRUMENTATION – II

Day and Date: Monday, 14-5-2018 Total Marks: 70

Time: 2.30 p.m to 5.30 p.m.

- Instructions: 1) Q. No. 1 is compulsory. It should be solved in first
  30 minutes in Answer Book Page No. 3. Each question
  carries one mark.
  - 2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.
  - 3) Figures to the right indicate full marks.

| Dura | atio | n : 30 Minutes                                |                  |                    | Marks : 14            |
|------|------|-----------------------------------------------|------------------|--------------------|-----------------------|
| 1.   | Fil  | I in the blanks :                             |                  |                    | (1×14=14)             |
|      | 1)   | The Rheographic method the cuff.              | ethod utilizes   | elec               | ctrodes for attaching |
|      |      | a) 2                                          | b) 3             | c) 4               | d) 5                  |
|      | 2)   | The phonocardiograconnected with the          | •                |                    | ording the            |
|      |      | a) conduction                                 | b) indirect B.P. | c) pumping         | d) circulation        |
|      | 3)   | The first heart soun                          | d is             | _ in pitch than se | cond heart sound.     |
|      |      | a) lower                                      | b) medium        | c) very low        | d) higher             |
|      | 4)   | If an external stimule its response is called | • •              | •                  | e                     |
|      |      | a) spinal cord                                | b) midbrain      | c) brain           | d) ear                |
|      | 5)   | Apnoea is theheart and circulation            |                  | eathing that prece | ede the arrest of the |
|      |      | a) pumping                                    | b) conduction    | c) cessation       | d) circulation        |



| 6)  | are d                                  | esigned to measu   | re and record foet  | tal heart rate on beat |    |
|-----|----------------------------------------|--------------------|---------------------|------------------------|----|
|     | to beat.                               |                    |                     |                        |    |
|     | a) Cardiotocograph                     | 1                  | b) GSR              |                        |    |
|     | c) Doppler                             |                    | d) Oscillometers    | S                      |    |
| 7)  | Range of threshold                     | of perception of e | electric shock is a | boutmA.                |    |
|     | a) 2                                   | b) 4               | c) 3                | d) 1                   |    |
| 8)  | shock with the electric wiri           |                    | the subject by a    | n accidental contact   |    |
|     | a) Micro                               | b) Macro           | c) Minute           | d) Gross               |    |
| 9)  | The respiratory cyc                    | le is accomplished | d by i              | in the thoracic volume |    |
|     | a) air                                 | b) volume          | c) capacity         | d) changes             |    |
| 10) | The most prominen eyes are closed is _ |                    | ern of an awake, ı  | relaxed adult whose    |    |
|     | a) alpha                               | b) theta           | c) delta            | d) beta                |    |
| 11) | A telemedicine prog                    | gram consists of a | ı 2 way             |                        |    |
|     | a) communication                       | b) analysis        | c) categories       | d) conduction          |    |
| 12) | Bioelectric potential                  | s are generated a  | at a le             | evel.                  |    |
|     | a) muscular                            | b) cellular        | c) refractory       | d) depolarization      |    |
| 13) | Motion artifact is red                 | duced to a negligi | ble magnitude by    | / abrasio              | n. |
|     | a) motion                              | b) skin            | c) gel              | d) membrane            |    |
| 14) | The medegree of absolute               |                    |                     | sed when the highest   |    |
|     | a) invasive                            | b) polarized       | c) direct           | d) indirect            |    |
|     |                                        |                    |                     |                        |    |



| Seat |  |
|------|--|
| No.  |  |

## T.E. (Biomedical Engg.) (Part II) (CGPA) Examination, 2018 BIOMEDICAL INSTRUMENTATION – II

Day and Date: Monday, 14-5-2018

Marks : 56

Time: 2.30 p.m. to 5.30 p.m.

**Instruction**: Figures to the **right** indicate **full** marks.

#### SECTION - I

#### 2. Attempt any four:

 $(4 \times 4 = 16)$ 

- 1) Draw and explain process of generation of pacemaker and muscle action potential.
- 2) Draw EEG waveform recorded for 10 20 configurations and label it.
- 3) Explain the generation of heart sound and mention each sound's significance.
- 4) Explain designing criteria of instrumentation amplifier for EEG and ERG recording techniques.
- 5) Define blood pressure. Explain any one B.P. measurement technique using indirect method.

## 3. Attempt **any two**:

 $(2 \times 6 = 12)$ 

- 1) Explain 10 20 electrode placements with the help of neat diagram and also explain the working of EEG machine.
- 2) Explain using suitable diagram of 12 lead ECG recording systems and define Einthoven's triangle.
- Explain the technique used for measurement of body temperature with suitable diagram.

#### SECTION - II

### 4. Attempt any four:

 $(4 \times 4 = 16)$ 

- 1) Explain working of fetal scalp pH measurement with necessary diagram.
- 2) Define micro, gross and leakage current, explain its occurrence.



- 3) Describe working of ECG transmitter with necessary diagram.
- 4) Explain working of cardiotocograph in detail.
- 5) Explain working of EEG biofeed system with necessary diagram.

## 5. Attempt any two:

- 1) Explain various patient grounding techniques and precautions with necessary diagram.
- 2) Explain working of ambulatory monitoring system.
- 3) Differentiate between working, construction and applications of baby incubator and infant warmer.



| Seat<br>No. |  | Set | Р |
|-------------|--|-----|---|
|-------------|--|-----|---|

## T.E. (Biomedical Engg.) (Part – II) (CGPA) Examination, 2018 MEDICAL IMAGING – I

Day and Date: Wednesday, 16-5-2018 Max. Marks: 70

Time: 2.30 p.m. to 5.30 p.m.

- Instructions: 1) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer book Page No. 3. Each question carries one mark.
  - 2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

| Duratio | on : 30 Minutes                              |                    |                       | Marks                 | : 14 |
|---------|----------------------------------------------|--------------------|-----------------------|-----------------------|------|
| 1. Ch   | oose the correct ar                          | nswer:             |                       |                       | 14   |
| 1)      | An object whichis called a black be          |                    | liation incident upon | it at all wavelengths |      |
|         | a) radiates                                  | b) incidents       | c) scatter            | d) absorbs            |      |
| 2)      | A bolometer is a _                           | dete               | ctor heated by inci   | dent radiation.       |      |
|         | a) radiation                                 | b) energy          | c) heat               | d) thermal            |      |
| 3)      | A figure of merit for equivalent temperature | •                  | nic imaging system    | is the                |      |
|         | a) noise                                     |                    | b) temperature        |                       |      |
|         | c) heat                                      |                    | d) energy             |                       |      |
| 4)      | Pulse echo imagin                            | ng is performed by | a tra                 | ansducer.             |      |
|         | a) rotating                                  | b) stationary      | c) flexible           | d) spectral           |      |
| 5)      | Phased array ultra                           | sound scanner is   | useful for            | scanning.             |      |
|         | a) nerves                                    | b) lever           | c) stomach            | d) cardiac            |      |

| 6)  | The characteristic impedance of and refraction.                               | ultrasound determines degree of     |
|-----|-------------------------------------------------------------------------------|-------------------------------------|
|     | a) incidence b) transmission                                                  | c) reflection d) intensity          |
| 7)  | Ultrasonic energy is transmitted throu                                        | ugh a medium is like a              |
|     | a) radiation b) wave motion                                                   | c) reflection d) conduction         |
| 8)  | is calculated estimate absorption of ultrasound.                              | of temperature increase with tissue |
|     | a) thermal index                                                              | b) acoustic impedance               |
|     | c) mechanical index                                                           | d) wavelength index                 |
| 9)  | The penetrating ability of an X-ray be                                        | eam is governed by                  |
|     | a) Kilovoltage or wavelength                                                  | b) Time                             |
|     | c) Milliamperage                                                              | d) Source-to-film distance          |
| 10) | The voltage and waveform applied transformer primarily determines the         | to the X-ray tube by a high-voltage |
|     | a) Quantity of radiation                                                      | b) Duration of exposure             |
|     | c) Penetrating ability                                                        | d) X-ray beam divergence            |
| 11) | In small capacity X-ray machines                                              | tubes are used.                     |
|     | a) stationary b) rotating                                                     | c) steady d) circular               |
| 12) | Collimators are usually provided with field can be exactly simulated by a lig | n a by which the X-ray ght field.   |
|     | a) grids                                                                      | b) strips                           |
|     | c) optical device                                                             | d) light source                     |
| 13) | Fluoroscopy image is always observe                                           | ed in room.                         |
|     | a) vacuum b) dark                                                             | c) brighter d) evacuated            |
| 14) | The infrared rays are electromagnetic than the radio frequencies.             | waves with a frequency              |
|     | a) lower b) higher                                                            | c) moderate d) none of above        |



| Seat |  |
|------|--|
| No.  |  |

# T.E. (Biomedical Engg.) (Part – II) (CGPA) Examination, 2018 MEDICAL IMAGING – I

Day and Date: Wednesday, 16-5-2018 Marks: 56

Time: 2.30 p.m. to 5.30 p.m.

#### SECTION - I

#### 2. Attempt any four:

 $(4 \times 4 = 16)$ 

- 1) Describe the continuous and pulsed wave Doppler ultrasound machine.
- 2) List the properties of X-ray and ultrasound waves.
- 3) Explain various modes of ultrasound scanning system.
- 4) Mention any 5 front panel controls of X-ray machine.
- 5) Draw and explain detailed constructional diagram of ultrasound transducer.

## 3. Attempt any two:

- 1) Explain filament circuit and high voltage circuit of X-ray generator in short.
- 2) Describe various types and applications of collimators used in X-ray machine.
- 3) Draw and explain working of X-ray machine.

#### -4-



#### SECTION - II

#### 4. Attempt any four:

 $(4 \times 4 = 16)$ 

- 1) Distinguish between image intensifier and fluoroscopy including their applications.
- 2) Mention any five applications of thermography.
- 3) Draw and explain the components and working of endoscopy with its applications in medicine.
- 4) Explain working of image intensifier with necessary diagram.
- 5) Explain the need, application and process of angiography technique.

#### 5. Attempt any two:

- 1) Explain principle and working of computed radiographic system.
- 2) Draw and explain principle and working of digital mammography machine.
- 3) Draw and explain principle and working of thermograph machine.



| Seat No. | Set | Q |
|----------|-----|---|
|----------|-----|---|

## T.E. (Biomedical Engg.) (Part – II) (CGPA) Examination, 2018 MEDICAL IMAGING – I

Day and Date: Wednesday, 16-5-2018 Max. Marks: 70

Time: 2.30 p.m. to 5.30 p.m.

Instructions: 1) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer book Page No. 3. Each question carries one mark.

2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

| Duration: 30 Minutes                                                                         | Marks : 14                              |
|----------------------------------------------------------------------------------------------|-----------------------------------------|
| 1. Choose the correct answer:                                                                | 14                                      |
| absorption of ultrasound.                                                                    | ate of temperature increase with tissue |
| a) thermal index                                                                             | b) acoustic impedance                   |
| c) mechanical index                                                                          | d) wavelength index                     |
| 2) The penetrating ability of an X-ray                                                       | beam is governed by                     |
| a) Kilovoltage or wavelength                                                                 | b) Time                                 |
| c) Milliamperage                                                                             | d) Source-to-film distance              |
| <ol> <li>The voltage and waveform applie<br/>transformer primarily determines the</li> </ol> | ed to the X-ray tube by a high-voltage  |
| a) Quantity of radiation                                                                     | b) Duration of exposure                 |
| c) Penetrating ability                                                                       | d) X-ray beam divergence                |
| 4) In small capacity X-ray machines _                                                        | tubes are used.                         |
| a) stationary b) rotating                                                                    | c) steady d) circular                   |

| 5)  |                                         | ually provided with<br>y simulated by a lig |      |                    | y which the X-ray  |
|-----|-----------------------------------------|---------------------------------------------|------|--------------------|--------------------|
|     | a) grids                                |                                             | b)   | strips             |                    |
|     | c) optical device                       |                                             | d)   | light source       |                    |
| 6)  | Fluoroscopy image                       | e is always observe                         | d ir | າ                  | room.              |
|     | a) vacuum                               | b) dark                                     | c)   | brighter           | d) evacuated       |
| 7)  | The infrared rays a than the radio freq | re electromagnetic<br>uencies.              | wa   | ves with a frequ   | ency               |
|     | a) lower                                | b) higher                                   | c)   | moderate           | d) none of above   |
| 8)  | An object which is called a black bo    | all radia<br>ody.                           | atio | n incident upon it | at all wavelengths |
|     | a) radiates                             | b) incidents                                | c)   | scatter            | d) absorbs         |
| 9)  | A bolometer is a _                      | detect                                      | or   | heated by incide   | ent radiation.     |
|     | a) radiation                            | b) energy                                   | c)   | heat               | d) thermal         |
| 10) | A figure of merit fo equivalent tempera | r the thermographic<br>ature difference.    | in c | naging system is   | s the              |
|     | a) noise                                |                                             | b)   | temperature        |                    |
|     | c) heat                                 |                                             | d)   | energy             |                    |
| 11) | Pulse echo imagin                       | g is performed by a                         | ι    | trar               | nsducer.           |
|     | a) rotating                             | b) stationary                               | c)   | flexible           | d) spectral        |
| 12) | Phased array ultra                      | sound scanner is u                          | sef  | ul for             | scanning.          |
|     | a) nerves                               | b) lever                                    | c)   | stomach            | d) cardiac         |
| 13) | The characteristi                       | ic impedance of refraction.                 | ultr | asound deterr      | mines degree of    |
|     | a) incidence                            | b) transmission                             | c)   | reflection         | d) intensity       |
| 14) | Ultrasonic energy                       | is transmitted throu                        | gh   | a medium is like   | e a                |
|     | a) radiation                            | b) wave motion                              | c)   | reflection         | d) conduction      |



| Seat |  |
|------|--|
| No.  |  |

# T.E. (Biomedical Engg.) (Part – II) (CGPA) Examination, 2018 MEDICAL IMAGING – I

Day and Date: Wednesday, 16-5-2018 Marks: 56

Time: 2.30 p.m. to 5.30 p.m.

#### SECTION - I

#### 2. Attempt any four:

 $(4 \times 4 = 16)$ 

- 1) Describe the continuous and pulsed wave Doppler ultrasound machine.
- 2) List the properties of X-ray and ultrasound waves.
- 3) Explain various modes of ultrasound scanning system.
- 4) Mention any 5 front panel controls of X-ray machine.
- 5) Draw and explain detailed constructional diagram of ultrasound transducer.

### 3. Attempt any two:

- 1) Explain filament circuit and high voltage circuit of X-ray generator in short.
- 2) Describe various types and applications of collimators used in X-ray machine.
- 3) Draw and explain working of X-ray machine.



#### SECTION - II

#### 4. Attempt any four:

 $(4 \times 4 = 16)$ 

- 1) Distinguish between image intensifier and fluoroscopy including their applications.
- 2) Mention any five applications of thermography.
- 3) Draw and explain the components and working of endoscopy with its applications in medicine.
- 4) Explain working of image intensifier with necessary diagram.
- 5) Explain the need, application and process of angiography technique.

#### 5. Attempt any two:

- 1) Explain principle and working of computed radiographic system.
- 2) Draw and explain principle and working of digital mammography machine.
- 3) Draw and explain principle and working of thermograph machine.



| Seat<br>No. |  | Set | R |
|-------------|--|-----|---|
|-------------|--|-----|---|

## T.E. (Biomedical Engg.) (Part – II) (CGPA) Examination, 2018 MEDICAL IMAGING – I

Day and Date: Wednesday, 16-5-2018 Max. Marks: 70

Time: 2.30 p.m. to 5.30 p.m.

- Instructions: 1) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer book Page No. 3. Each question carries one mark.
  - 2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

| Duratio | n : 30 Minutes       |                       |                      | Marks:             | 14 |
|---------|----------------------|-----------------------|----------------------|--------------------|----|
| 1. Ch   | oose the correct an  | swer:                 |                      |                    | 14 |
| 1)      | Phased array ultra   | sound scanner is u    | seful for            | scanning.          |    |
|         | a) nerves            | b) lever              | c) stomach           | d) cardiac         |    |
| 2)      | The characterist and | •                     | ultrasound deterr    | mines degree of    |    |
|         | a) incidence         | b) transmission       | c) reflection        | d) intensity       |    |
| 3)      | Ultrasonic energy    | is transmitted throu  | igh a medium is like | e a                |    |
|         | a) radiation         | b) wave motion        | c) reflection        | d) conduction      |    |
| 4)      | absorption of ultra  |                       | of temperature inc   | crease with tissue |    |
|         | a) thermal index     |                       | b) acoustic imped    | lance              |    |
|         | c) mechanical inc    | lex                   | d) wavelength ind    | lex                |    |
| 5)      | The penetrating at   | oility of an X-ray be | am is governed by    |                    |    |
|         | a) Kilovoltage or    | wavelength            | b) Time              |                    |    |
|         | c) Milliamperage     |                       | d) Source-to-film    | distance           |    |

| 6)  | The voltage and waveform applied to the X-ray tube by a high-voltage transformer primarily determines the |                     |       |                    |                      |
|-----|-----------------------------------------------------------------------------------------------------------|---------------------|-------|--------------------|----------------------|
|     | a) Quantity of rad                                                                                        | iation              | b)    | Duration of exp    | oosure               |
|     | c) Penetrating ab                                                                                         | ility               | d)    | X-ray beam div     | /ergence             |
| 7)  | In small capacity X                                                                                       | -ray machines       |       | tubes a            | re used.             |
|     | a) stationary                                                                                             | b) rotating         | c)    | steady             | d) circular          |
| 8)  | Collimators are us field can be exactly                                                                   | • •                 |       |                    | y which the X-ray    |
|     | a) grids                                                                                                  |                     | b)    | strips             |                      |
|     | c) optical device                                                                                         |                     | d)    | light source       |                      |
| 9)  | Fluoroscopy image                                                                                         | e is always observe | d ir  | 1                  | room.                |
|     | a) vacuum                                                                                                 | b) dark             | c)    | brighter           | d) evacuated         |
| 10) | The infrared rays a than the radio freq                                                                   |                     | wav   | ves with a frequ   | ency                 |
|     | a) lower                                                                                                  | b) higher           | c)    | moderate           | d) none of above     |
| 11) | An object which                                                                                           | all radia           | atior | n incident upon it | t at all wavelengths |
|     | is called a black bo                                                                                      | ody.                |       |                    |                      |
|     | a) radiates                                                                                               | b) incidents        | c)    | scatter            | d) absorbs           |
| 12) | A bolometer is a _                                                                                        | detect              | tor h | neated by incide   | ent radiation.       |
|     | a) radiation                                                                                              | b) energy           | c)    | heat               | d) thermal           |
| 13) | A figure of merit fo equivalent tempera                                                                   | • .                 | c im  | aging system is    | s the                |
|     | a) noise                                                                                                  |                     | b)    | temperature        |                      |
|     | c) heat                                                                                                   |                     | d)    | energy             |                      |
| 14) | Pulse echo imagin                                                                                         | g is performed by a | a     | tra                | nsducer.             |
|     | a) rotating                                                                                               | b) stationary       | c)    | flexible           | d) spectral          |



| Seat |  |
|------|--|
| No.  |  |

# T.E. (Biomedical Engg.) (Part – II) (CGPA) Examination, 2018 MEDICAL IMAGING – I

Day and Date: Wednesday, 16-5-2018 Marks: 56

Time: 2.30 p.m. to 5.30 p.m.

#### SECTION - I

#### 2. Attempt any four:

 $(4 \times 4 = 16)$ 

- 1) Describe the continuous and pulsed wave Doppler ultrasound machine.
- 2) List the properties of X-ray and ultrasound waves.
- 3) Explain various modes of ultrasound scanning system.
- 4) Mention any 5 front panel controls of X-ray machine.
- 5) Draw and explain detailed constructional diagram of ultrasound transducer.

#### 3. Attempt any two:

- 1) Explain filament circuit and high voltage circuit of X-ray generator in short.
- 2) Describe various types and applications of collimators used in X-ray machine.
- 3) Draw and explain working of X-ray machine.

#### -4-



#### SECTION - II

#### 4. Attempt any four:

 $(4 \times 4 = 16)$ 

- 1) Distinguish between image intensifier and fluoroscopy including their applications.
- 2) Mention any five applications of thermography.
- 3) Draw and explain the components and working of endoscopy with its applications in medicine.
- 4) Explain working of image intensifier with necessary diagram.
- 5) Explain the need, application and process of angiography technique.

#### 5. Attempt any two:

- 1) Explain principle and working of computed radiographic system.
- 2) Draw and explain principle and working of digital mammography machine.
- 3) Draw and explain principle and working of thermograph machine.



| Seat |  |
|------|--|
| Ocat |  |
| No   |  |
| No.  |  |
| 1    |  |

## T.E. (Biomedical Engg.) (Part – II) (CGPA) Examination, 2018 MEDICAL IMAGING – I

Day and Date: Wednesday, 16-5-2018 Max. Marks: 70

Time: 2.30 p.m. to 5.30 p.m.

- Instructions: 1) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer book Page No. 3. Each question carries one mark.
  - 2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

| Duration: | 30 Minutes                             |                                             |                   | Marks: 14          |
|-----------|----------------------------------------|---------------------------------------------|-------------------|--------------------|
| 1. Choos  | e the correct an                       | swer:                                       |                   | 14                 |
| •         | •                                      | waveform applied trily determines the       | •                 | by a high-voltage  |
| a)        | Quantity of rad                        | iation                                      | b) Duration of e  | xposure            |
| c)        | Penetrating ab                         | ility                                       | d) X-ray beam of  | divergence         |
| 2) In :   | small capacity X                       | (-ray machines                              | tubes             | are used.          |
| a)        | stationary                             | b) rotating                                 | c) steady         | d) circular        |
| •         |                                        | ually provided with<br>y simulated by a lig |                   | by which the X-ray |
| a)        | grids                                  |                                             | b) strips         |                    |
| c)        | optical device                         |                                             | d) light source   |                    |
| 4) Flu    | oroscopy image                         | e is always observe                         | ed in             | _ room.            |
| a)        | vacuum                                 | b) dark                                     | c) brighter       | d) evacuated       |
| ,         | e infrared rays a<br>In the radio freq | •                                           | waves with a freq | uency              |
| a)        | lower                                  | b) higher                                   | c) moderate       | d) none of above   |

| 6)   | An object which all radiation incident upon it at all wavelengths is called a black body. |                                       |       | at all wavelengths |                   |
|------|-------------------------------------------------------------------------------------------|---------------------------------------|-------|--------------------|-------------------|
|      | a) radiates                                                                               | b) incidents                          | c)    | scatter            | d) absorbs        |
| 7)   | A bolometer is a _                                                                        | detec                                 | tor I | neated by incide   | ent radiation.    |
|      | a) radiation                                                                              | b) energy                             | c)    | heat               | d) thermal        |
| 8)   | A figure of merit for equivalent temper                                                   | or the thermographicature difference. | c im  | naging system is   | s the             |
|      | a) noise                                                                                  |                                       | b)    | temperature        |                   |
|      | c) heat                                                                                   |                                       | d)    | energy             |                   |
| 9)   | Pulse echo imagir                                                                         | ng is performed by a                  | a     | trar               | nsducer.          |
|      | a) rotating                                                                               | b) stationary                         | c)    | flexible           | d) spectral       |
| 10)  | Phased array ultra                                                                        | asound scanner is u                   | ısef  | ul for             | scanning.         |
|      | a) nerves                                                                                 | b) lever                              | c)    | stomach            | d) cardiac        |
| 11)  | The characterist                                                                          | ic impedance of refraction.           | ultr  | asound deterr      | mines degree of   |
|      | a) incidence                                                                              | b) transmission                       | c)    | reflection         | d) intensity      |
| 12)  | Ultrasonic energy                                                                         | is transmitted throu                  | ıgh   | a medium is like   | e a               |
|      | a) radiation                                                                              | b) wave motion                        | c)    | reflection         | d) conduction     |
| 13)  |                                                                                           | alculated estimate                    | of t  | temperature inc    | rease with tissue |
|      | absorption of ultra                                                                       | souna.                                | b)    | acquetic imped     | lanco             |
|      | a) thermal index                                                                          | dex                                   | •     | acoustic imped     |                   |
| 1 1) | •                                                                                         |                                       | -     | _                  |                   |
| 14)  |                                                                                           | bility of an X-ray be                 |       | Time               |                   |
|      | a) Kilovoltage or                                                                         | waveleligili                          | ,     |                    | Р.,               |
|      | c) Milliamperage                                                                          |                                       | d)    | Source-to-film     | distance          |



| Seat |  |
|------|--|
| No.  |  |

# T.E. (Biomedical Engg.) (Part – II) (CGPA) Examination, 2018 MEDICAL IMAGING – I

Day and Date: Wednesday, 16-5-2018 Marks: 56

Time: 2.30 p.m. to 5.30 p.m.

#### SECTION - I

#### 2. Attempt any four:

 $(4 \times 4 = 16)$ 

- 1) Describe the continuous and pulsed wave Doppler ultrasound machine.
- 2) List the properties of X-ray and ultrasound waves.
- 3) Explain various modes of ultrasound scanning system.
- 4) Mention any 5 front panel controls of X-ray machine.
- 5) Draw and explain detailed constructional diagram of ultrasound transducer.

## 3. Attempt any two:

- 1) Explain filament circuit and high voltage circuit of X-ray generator in short.
- 2) Describe various types and applications of collimators used in X-ray machine.
- 3) Draw and explain working of X-ray machine.



#### SECTION - II

### 4. Attempt any four:

 $(4 \times 4 = 16)$ 

- 1) Distinguish between image intensifier and fluoroscopy including their applications.
- 2) Mention any five applications of thermography.
- 3) Draw and explain the components and working of endoscopy with its applications in medicine.
- 4) Explain working of image intensifier with necessary diagram.
- 5) Explain the need, application and process of angiography technique.

#### 5. Attempt any two:

- 1) Explain principle and working of computed radiographic system.
- 2) Draw and explain principle and working of digital mammography machine.
- 3) Draw and explain principle and working of thermograph machine.



| Sea<br>No |                                             |                                              |                                                         | Set P                                                                                |
|-----------|---------------------------------------------|----------------------------------------------|---------------------------------------------------------|--------------------------------------------------------------------------------------|
|           | T.E. (Part – II)                            | -                                            | ngg.) (CGPA) Exa<br>DL SYSTEMS                          | mination, 2018                                                                       |
| •         | and Date : Friday, :<br>: 2.30 p.m. to 5.30 |                                              |                                                         | Max. Marks: 70                                                                       |
|           | ·                                           | 30 minutes in A carries one mar Answer MCQ/0 | Answer Book Page I<br>k.<br><b>Dbjective type que</b> s | Id be solved in first No. 3. Each question Stions on Page No. 3 Set (P/Q/R/S) on Top |
| Dura      | tion : 30 Minutes                           | MCQ/Objectiv                                 | e Type Questions                                        | Marks : 14                                                                           |
| 1. (      | Choose the correct                          | answer:                                      |                                                         |                                                                                      |
|           | 1) By using<br>obtained.                    | eleme                                        | ent mechanical trans                                    | slational systems are                                                                |
|           | a) mass                                     | b) spring                                    | c) dash pot                                             | d) all above                                                                         |
|           | 2) Transient state                          | analysis deals wi                            | th                                                      |                                                                                      |
|           | a) magnitude of                             | error                                        | b) nature of res                                        | ponse                                                                                |
|           | c) both a) and b                            | <b>)</b>                                     | d) none of the a                                        | above                                                                                |
|           | 3)                                          | is the type of c                             | losed loop system                                       | for the plant transfer                                                               |
|           | function G(s) =                             | $\frac{\zeta}{2}$ (1+s) and with             | unity feedback.                                         |                                                                                      |
|           | a) 1                                        |                                              | c) 3                                                    | d) 0                                                                                 |
|           | 4) Lead compensa                            | tor is used to imp                           | prove                                                   |                                                                                      |

5) Adding a pole to a system transfer function in terms of compensator

b) lag

d) lag-lead

b) steady state response

d) none of the above

a) transient response

represents a \_\_\_\_\_ compensator.

c) both a) and b)

a) lead

c) lead-lag

| 6)  | For type I system v                         | I system with parabolic input, the steady state error is                                                         |                                |                 |  |  |
|-----|---------------------------------------------|------------------------------------------------------------------------------------------------------------------|--------------------------------|-----------------|--|--|
|     | a) zero                                     |                                                                                                                  | b) finite constant             |                 |  |  |
|     | c) infinite                                 |                                                                                                                  | d) indeterminate               |                 |  |  |
| 7)  | A system is stable                          | for                                                                                                              |                                |                 |  |  |
|     | a) G.M. and P.M.                            | both +ve                                                                                                         | b) G.M. and P.M.               | both -ve        |  |  |
|     | c) G.Mve                                    |                                                                                                                  | d) P.Mve                       |                 |  |  |
| 8)  | Number of roots in $s^3 - 4s^2 + s + 6 = 0$ | of roots in left hand of s-plane if characteristic equation is $+ s + 6 = 0$ is                                  |                                |                 |  |  |
|     | a) 1                                        | b) 2                                                                                                             | c) 3                           | d) 0            |  |  |
| 9)  | The value of gain r                         | he value of gain margin of the system having $G(s) H(s) = 8/(s + 2)^3$ is                                        |                                |                 |  |  |
|     | a) 8                                        | b) 2                                                                                                             | c) 6                           | d) 4            |  |  |
| 10) | Find the order of s                         | der of system $G(s) = \frac{s+6}{s(s-2)(s-4)}$ .                                                                 |                                |                 |  |  |
|     | a) 2                                        | b) 3                                                                                                             | c) 4                           | d) 5            |  |  |
| 11) | Slope of asymptot octave.                   | e in Bode plot of                                                                                                | 2 <sup>nd</sup> order system i | s per           |  |  |
|     | a) 18 dB                                    | b) 12 dB                                                                                                         | c) 6 dB                        | d) 3 dB         |  |  |
| 12) | Settling time for 5%                        | % tolerance band i                                                                                               | S                              |                 |  |  |
|     | a) 3 T                                      | b) 4 T                                                                                                           | c) 5 T                         | d) 2 T          |  |  |
| 13) | • •                                         | e polynomial $P(s) = 2s^5 + s^4 + 4s^3 + 2s^2 + 3s + 15$ , number of roots lie in right half plane of s-plane is |                                |                 |  |  |
|     | a) 4                                        | b) 2                                                                                                             | c) 3                           | d) 1            |  |  |
| 14) | Electrical analogousystem is                | rical analogous element for damper element in mechanical translational m is                                      |                                |                 |  |  |
|     | a) capacitor                                | b) inductor                                                                                                      | c) resistor                    | d) any of above |  |  |
|     |                                             | <del></del>                                                                                                      | <del></del>                    |                 |  |  |



| Seat |  |
|------|--|
| No.  |  |

## T.E. (Part – II) (Biomedical Engg.) (CGPA) Examination, 2018 CONTROL SYSTEMS

Day and Date: Friday, 18-05-2018

Time: 2.30 p.m. to 5.30 p.m.

SECTION - I

2. Attempt any four questions:

 $(4 \times 4 = 16)$ 

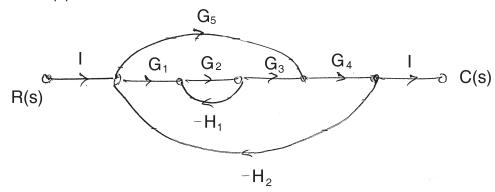
Marks: 56

- Define and differentiate between translational and rotational system with each of example.
- 2) Derive the transfer function of simple closed loop system.
- 3) Draw the block diagram for given electric circuit and hence evaluate the transfer function  $E_o(s)/E_i(s)$ .

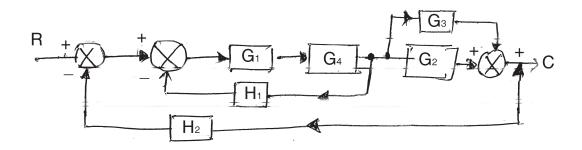
$$e_{i}(t) = \frac{100 \text{ k}\Omega}{100 \text{ k}\Omega}$$

- 4) Describe any four properties of signal flow graph.
- 5) Define and compare between relative stability and absolute stability.
- 3. Attempt any two questions:

 $(6 \times 2 = 12)$ 


1) Find the range of values of 'k' for which the following system is stable.

a) 
$$s^4 + ks^3 + s^2 + s + 1 = 0$$

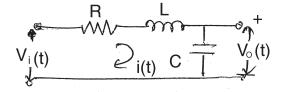

b) 
$$G(s) H(s) = \frac{k}{(s+2)(s+4)(s^2+6s+25)}$$
.



2) Find  $\frac{C(s)}{R(s)}$  by using Mason's gain formula.



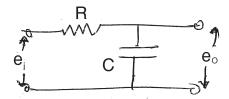
3) Determine the transfer function C(s)/R(s) of system shown in fig.




SECTION - II

## 4. Attempt any 4 questions:

 $(4 \times 4 = 16)$ 


1) Define state variables and state model concept and obtain the state model for given electrical system.



- 2) Explain the angle and magnitude conditions of the root locus.
- 3) Define G.M. and P.M. and draw the Bode plot of stable system showing G.M. and P.M.



4) Draw the polar plot of a RC filter circuit shown below



- 5) Describe lag and lead-lag compensating networks with necessary figure.
- 5. Attempt any 2 questions:

- 1) Draw the Nyquist plot for a system with  $G(s) H(s) = \frac{10(s+3)}{s(s-1)}$  and comment on the closed loop stability.
- 2) Sketch the Bode plot for following transfer function and determine the system gain cross over frequency and phase cross over frequency  $G(s) \, H(s) = \frac{80(s+5)}{s^2(s+50)} \, .$
- 3) Sketch the root locus for system with  $G(s) H(s) = \frac{k(s+4)}{s(s^2+2s+2)}$ .

Seat No.

Set

Max. Marks: 70



# T.E. (Part – II) (Biomedical Engg.) (CGPA) Examination, 2018 CONTROL SYSTEMS

Day and Date: Friday, 18-05-2018

Time: 2.30 p.m. to 5.30 p.m.

Instructions: 1) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book Page No. 3. Each question carries one mark.

2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

#### MCQ/Objective Type Questions

Duration: 30 Minutes Marks: 14

- 1. Choose the correct answer:
  - 1) Number of roots in left hand of s-plane if characteristic equation is  $s^3 4s^2 + s + 6 = 0$  is
    - a) 1

- b) 2
- c) 3
- d) 0
- 2) The value of gain margin of the system having  $G(s) H(s) = 8/(s + 2)^3$  is
  - a) 8

- b) 2
- c) 6
- d) 4
- 3) Find the order of system  $G(s) = \frac{s+6}{s(s-2)(s-4)}$ .
  - a) 2

- b) 3
- c) 4

- d) 5
- 4) Slope of asymptote in Bode plot of 2<sup>nd</sup> order system is \_\_\_\_\_ per octave.
  - a) 18 dB
- b) 12 dB
- c) 6 dB
- d) 3 dB

- 5) Settling time for 5% tolerance band is
  - a) 3 T
- b) 4 T
- c) 5 T
- d) 2 T
- 6) For the polynomial  $P(s) = 2s^5 + s^4 + 4s^3 + 2s^2 + 3s + 15$ , number of roots which lie in right half plane of s-plane is
  - a) 4

- b) 2
- c) 3
- d) 1

| 7)  | Electrical analogous element for damper element in mechanical translational system is                                  |                     |                       |                  |      |                  |
|-----|------------------------------------------------------------------------------------------------------------------------|---------------------|-----------------------|------------------|------|------------------|
|     | a) capacitor                                                                                                           | b) inductor         | c)                    | resistor         | d)   | any of above     |
| 8)  | By usingobtained.                                                                                                      | element             | me                    | chanical transla | tion | nal systems are  |
|     | a) mass                                                                                                                | b) spring           | c)                    | dash pot         | d)   | all above        |
| 9)  | ) Transient state analysis deals with                                                                                  |                     |                       |                  |      |                  |
|     | a) magnitude of error                                                                                                  |                     | b) nature of response |                  |      |                  |
|     | c) both a) and b)                                                                                                      |                     | d)                    | none of the abo  | ove  |                  |
| 10) | is                                                                                                                     | the type of close   | ed I                  | oop system for   | the  | e plant transfer |
|     | is the type of closed loop system for the plant transfer function $G(s) = \frac{k}{s^2}(1+s)$ and with unity feedback. |                     |                       |                  |      |                  |
|     | a) 1                                                                                                                   | b) 2                | c)                    | 3                | d)   | 0                |
| 11) | Lead compensator                                                                                                       | is used to improv   | e                     |                  |      |                  |
|     | a) transient respor                                                                                                    | nse                 | b)                    | steady state re  | spo  | nse              |
|     | c) both a) and b)                                                                                                      |                     | d)                    | none of the abo  | ove  |                  |
| 12) | Adding a pole to a represents a                                                                                        | -                   |                       |                  | com  | npensator        |
|     | a) lead                                                                                                                |                     | b)                    | lag              |      |                  |
|     | c) lead-lag                                                                                                            |                     | d)                    | lag-lead         |      |                  |
| 13) | For type I system v                                                                                                    | vith parabolic inpu | ıt, tl                | ne steady state  | erro | or is            |
|     | a) zero                                                                                                                |                     | b)                    | finite constant  |      |                  |
|     | c) infinite                                                                                                            |                     | d)                    | indeterminate    |      |                  |
| 14) | A system is stable                                                                                                     | for                 |                       |                  |      |                  |
|     | a) G.M. and P.M. I                                                                                                     | ooth +ve            | b)                    | G.M. and P.M.    | bot  | h –ve            |
|     | c) G.Mve                                                                                                               |                     | d)                    | P.M. –ve         |      |                  |
|     |                                                                                                                        |                     |                       |                  |      |                  |



| Seat |  |
|------|--|
| No.  |  |

# T.E. (Part – II) (Biomedical Engg.) (CGPA) Examination, 2018 CONTROL SYSTEMS

Day and Date: Friday, 18-05-2018 Marks: 56

Time: 2.30 p.m. to 5.30 p.m.

#### SECTION - I

#### 2. Attempt any four questions:

 $(4 \times 4 = 16)$ 

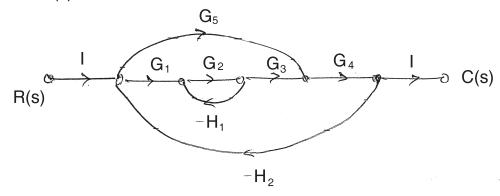
- Define and differentiate between translational and rotational system with each of example.
- 2) Derive the transfer function of simple closed loop system.
- 3) Draw the block diagram for given electric circuit and hence evaluate the transfer function  $E_{\rm o}(s)/E_{\rm i}(s)$ .

$$e_{i}(t) = \frac{100 \text{ k}\Omega}{100 \text{ k}\Omega}$$

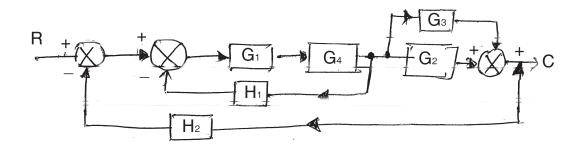
- 4) Describe any four properties of signal flow graph.
- 5) Define and compare between relative stability and absolute stability.

### 3. Attempt any two questions:

 $(6 \times 2 = 12)$ 


1) Find the range of values of 'k' for which the following system is stable.

a) 
$$s^4 + ks^3 + s^2 + s + 1 = 0$$

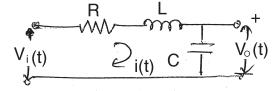

b) 
$$G(s) H(s) = \frac{k}{(s+2)(s+4)(s^2+6s+25)}$$
.



2) Find  $\frac{C(s)}{R(s)}$  by using Mason's gain formula.



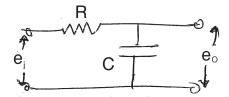
3) Determine the transfer function C(s)/R(s) of system shown in fig.




SECTION - II

### 4. Attempt any 4 questions:

 $(4 \times 4 = 16)$ 


1) Define state variables and state model concept and obtain the state model for given electrical system.



- 2) Explain the angle and magnitude conditions of the root locus.
- 3) Define G.M. and P.M. and draw the Bode plot of stable system showing G.M. and P.M.



4) Draw the polar plot of a RC filter circuit shown below



- 5) Describe lag and lead-lag compensating networks with necessary figure.
- 5. Attempt any 2 questions:

- 1) Draw the Nyquist plot for a system with  $G(s) H(s) = \frac{10(s+3)}{s(s-1)}$  and comment on the closed loop stability.
- 2) Sketch the Bode plot for following transfer function and determine the system gain cross over frequency and phase cross over frequency  $G(s) \, H(s) = \frac{80(s+5)}{s^2(s+50)} \, .$
- 3) Sketch the root locus for system with  $G(s) H(s) = \frac{k(s+4)}{s(s^2+2s+2)}$ .

| Seat |  |
|------|--|
| No.  |  |



#### T.E. (Part – II) (Biomedical Engg.) (CGPA) Examination, 2018 **CONTROL SYSTEMS**

Day and Date: Friday, 18-05-2018 Max. Marks: 70

Time: 2.30 p.m. to 5.30 p.m.

Instructions: 1) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book Page No. 3. Each question carries one mark.

> 2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

|         |                                             | MCQ/Objective T     | уре    | Questions        |                 |                   |
|---------|---------------------------------------------|---------------------|--------|------------------|-----------------|-------------------|
| Duratio | on: 30 Minutes                              |                     |        |                  |                 | Marks: 14         |
| 1. Ch   | oose the correct an                         | swer:               |        |                  |                 |                   |
| 1)      | Adding a pole to a represents a             | •                   |        |                  | compensato      | or                |
|         | a) lead                                     |                     | b)     | lag              |                 |                   |
|         | c) lead-lag                                 |                     | d)     | lag-lead         |                 |                   |
| 2)      | For type I system                           | with parabolic inpu | ut, th | ne steady state  | error is        |                   |
|         | a) zero                                     |                     | b)     | finite constant  |                 |                   |
|         | c) infinite                                 |                     | d)     | indeterminate    |                 |                   |
| 3)      | A system is stable                          | for                 |        |                  |                 |                   |
|         | a) G.M. and P.M.                            | both +ve            | b)     | G.M. and P.M.    | both -ve        |                   |
|         | c) G.Mve                                    |                     | d)     | P.M. –ve         |                 |                   |
| 4)      | Number of roots in $s^3 - 4s^2 + s + 6 = 0$ | •                   | ne i   | f characteristic | equation is     |                   |
|         | a) 1                                        | b) 2                | c)     | 3                | d) 0            |                   |
| 5)      | The value of gain r                         | margin of the syste | em     | having G(s) H(s  | (s) = 8/(s + 2) | ) <sup>3</sup> is |
|         | a) 8                                        | b) 2                | c)     | 6                | d) 4            |                   |



| Find the order of s                    | system G(s) = $\frac{s}{s(s-s)}$                                                                                                                                             | $\frac{s+b}{2)(s-4)}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                            |
|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| a) 2                                   | b) 3                                                                                                                                                                         | c) 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | d) 5                                                                       |
| Slope of asymptotoctave.               | te in Bode plot of                                                                                                                                                           | 2 <sup>nd</sup> order system i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | is per                                                                     |
| a) 18 dB                               | b) 12 dB                                                                                                                                                                     | c) 6 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | d) 3 dB                                                                    |
| Settling time for 5% tolerance band is |                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                            |
| a) 3 T                                 | b) 4 T                                                                                                                                                                       | c) 5 T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | d) 2 T                                                                     |
|                                        |                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5, number of roots                                                         |
| a) 4                                   | b) 2                                                                                                                                                                         | c) 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | d) 1                                                                       |
| Electrical analogousystem is           | us element for dam                                                                                                                                                           | per element in mech                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nanical translational                                                      |
| a) capacitor                           | b) inductor                                                                                                                                                                  | c) resistor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | d) any of above                                                            |
| By usingobtained.                      | element                                                                                                                                                                      | mechanical transla                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ational systems are                                                        |
| a) mass                                | b) spring                                                                                                                                                                    | c) dash pot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | d) all above                                                               |
| Transient state an                     | alysis deals with                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                            |
| a) magnitude of e                      | rror                                                                                                                                                                         | b) nature of response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | onse                                                                       |
| c) both a) and b)                      |                                                                                                                                                                              | d) none of the ab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ove                                                                        |
| is                                     | s the type of clos                                                                                                                                                           | ed loop system for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | r the plant transfer                                                       |
| function G(s) = $\frac{k}{s^2}$        | (1+s) and with un                                                                                                                                                            | ity feedback.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                            |
| a) 1                                   | b) 2                                                                                                                                                                         | c) 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | d) 0                                                                       |
| Lead compensator                       | r is used to improv                                                                                                                                                          | /e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                            |
| a) transient respo                     | nse                                                                                                                                                                          | b) steady state re                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | esponse                                                                    |
| c) both a) and b)                      |                                                                                                                                                                              | d) none of the ab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                            |
|                                        | a) 2  Slope of asymptomoctave.  a) 18 dB  Settling time for 50 a) 3 T  For the polynomial which lie in right has a) 4  Electrical analogous system is a) capacitor  By using | a) 2 b) 3  Slope of asymptote in Bode plot of octave.  a) 18 dB b) 12 dB  Settling time for 5% tolerance band a) 3 T b) 4 T  For the polynomial $P(s) = 2s^5 + s^4 + 4$ which lie in right half plane of s-plan a) 4 b) 2  Electrical analogous element for dam system is a) capacitor b) inductor  By using element obtained. a) mass b) spring  Transient state analysis deals with a) magnitude of error c) both a) and b) is the type of close function $G(s) = \frac{k}{s^2}(1+s)$ and with un a) 1 b) 2  Lead compensator is used to improve a) transient response | Slope of asymptote in Bode plot of $2^{nd}$ order system octave.  a) 18 dB |



| Seat |  |
|------|--|
| No.  |  |

# T.E. (Part – II) (Biomedical Engg.) (CGPA) Examination, 2018 CONTROL SYSTEMS

Day and Date: Friday, 18-05-2018 Marks: 56

Time: 2.30 p.m. to 5.30 p.m.

#### SECTION - I

#### 2. Attempt any four questions :

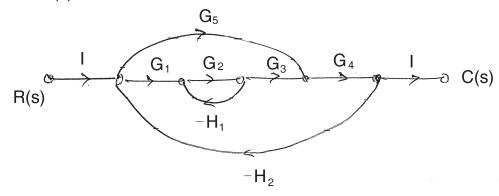
 $(4 \times 4 = 16)$ 

- 1) Define and differentiate between translational and rotational system with each of example.
- 2) Derive the transfer function of simple closed loop system.
- 3) Draw the block diagram for given electric circuit and hence evaluate the transfer function  $E_{\rm o}(s)/E_{\rm i}(s)$ .

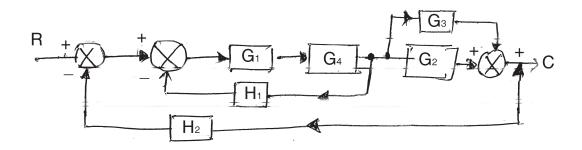
- 4) Describe any four properties of signal flow graph.
- 5) Define and compare between relative stability and absolute stability.

#### 3. Attempt any two questions:

 $(6 \times 2 = 12)$ 


1) Find the range of values of 'k' for which the following system is stable.

a) 
$$s^4 + ks^3 + s^2 + s + 1 = 0$$

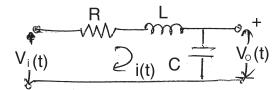

b) 
$$G(s) H(s) = \frac{k}{(s+2)(s+4)(s^2+6s+25)}$$
.



2) Find  $\frac{C(s)}{R(s)}$  by using Mason's gain formula.



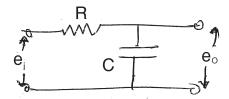
3) Determine the transfer function C(s)/R(s) of system shown in fig.




SECTION - II

### 4. Attempt any 4 questions:

 $(4 \times 4 = 16)$ 


1) Define state variables and state model concept and obtain the state model for given electrical system.



- 2) Explain the angle and magnitude conditions of the root locus.
- 3) Define G.M. and P.M. and draw the Bode plot of stable system showing G.M. and P.M.



4) Draw the polar plot of a RC filter circuit shown below



- 5) Describe lag and lead-lag compensating networks with necessary figure.
- 5. Attempt any 2 questions:

- 1) Draw the Nyquist plot for a system with  $G(s) H(s) = \frac{10(s+3)}{s(s-1)}$  and comment on the closed loop stability.
- 2) Sketch the Bode plot for following transfer function and determine the system gain cross over frequency and phase cross over frequency  $G(s) \, H(s) = \frac{80(s+5)}{s^2(s+50)} \, .$
- 3) Sketch the root locus for system with  $G(s) H(s) = \frac{k(s+4)}{s(s^2+2s+2)}$ .



| Seat |  |
|------|--|
| No.  |  |

P.T.O.

# T.F. (Part - II) (Riomedical Enga.) (CGPA) Examination, 2018.

|         | 1.L. (Part – II) (L                          | CONTROL S                                                                    | SYSTEMS                               | mation, 2010                                                                   |
|---------|----------------------------------------------|------------------------------------------------------------------------------|---------------------------------------|--------------------------------------------------------------------------------|
|         | d Date : Friday, 18-<br>2.30 p.m. to 5.30 p. |                                                                              |                                       | Max. Marks: 70                                                                 |
| ,       | 30<br>ca<br>2) <b>A</b><br><b>o</b>          | <b>0 minutes</b> in Anst<br>arries <b>one</b> mark.<br><b>nswer MCQ/Obje</b> | wer Book Page No<br>ective type quest | be solved in first  3. Each question  ions on Page No. 3  Set (P/Q/R/S) on Top |
| Duratio | n : 30 Minutes                               | MCQ/Objective T                                                              | ype Questions                         | Marks : 14                                                                     |
|         | oose the correct an                          | swer:                                                                        |                                       | Marke . Tr                                                                     |
| 1)      | Find the order of s                          | ystem G(s) = $\frac{s}{s(s-1)}$                                              | $\frac{s+6}{2)(s-4)}$ .               |                                                                                |
|         | a) 2                                         | b) 3                                                                         |                                       | d) 5                                                                           |
| 2)      | Slope of asymptot octave.                    | e in Bode plot of                                                            | 2 <sup>nd</sup> order system i        | s per                                                                          |
|         | a) 18 dB                                     | b) 12 dB                                                                     | c) 6 dB                               | d) 3 dB                                                                        |
| 3)      | Settling time for 5%                         | % tolerance band i                                                           | S                                     |                                                                                |
|         | a) 3 T                                       | b) 4 T                                                                       | c) 5 T                                | d) 2 T                                                                         |
| 4)      | For the polynomial which lie in right ha     |                                                                              |                                       | , number of roots                                                              |
|         | a) 4                                         | b) 2                                                                         | c) 3                                  | d) 1                                                                           |
| 5)      | Electrical analogou system is                | s element for damp                                                           | oer element in mech                   | nanical translational                                                          |
|         | a) capacitor                                 | b) inductor                                                                  | c) resistor                           | d) any of above                                                                |
| 6)      | By usingobtained.                            | element                                                                      | mechanical transla                    | ational systems are                                                            |
|         | a) mass                                      | b) spring                                                                    | c) dash pot                           | d) all above                                                                   |

| 8) _<br>ft.<br>a<br>9) L<br>a<br>c<br>10) A<br>a<br>c<br>12) A<br>a<br>c<br>13) N            | a) magnitude of er<br>c) both a) and b)<br>unction $G(s) = \frac{k}{s^2}$ (a) 1<br>Lead compensator<br>a) transient respon | the type of close<br>I+s) and with unitb) 2 | d)<br>ed l<br>ty fe | nature of respo<br>none of the abo<br>loop system for<br>eedback. |                    |
|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|---------------------|-------------------------------------------------------------------|--------------------|
| 8) _ ft a 9) L a c 11) F a c 12) A a c 13) N                                                 | unction $G(s) = \frac{k}{s^2}$ a) 1  Lead compensator                                                                      | I+s) and with unite b) 2                    | ed l                | loop system for                                                   |                    |
| ft.<br>a<br>9) L<br>a<br>c<br>10) A<br>a<br>c<br>11) F<br>a<br>c<br>12) A<br>a<br>c<br>13) N | unction G(s) = $\frac{k}{s^2}$ (1<br>a) 1<br>Lead compensator                                                              | I+s) and with unite b) 2                    | ty fe               | loop system for<br>eedback.                                       | the plant transfer |
| ft.<br>a<br>9) L<br>a<br>c<br>10) A<br>a<br>c<br>11) F<br>a<br>c<br>12) A<br>a<br>c<br>13) N | unction G(s) = $\frac{k}{s^2}$ (1<br>a) 1<br>Lead compensator                                                              | I+s) and with unite b) 2                    | ty fe               | eedback.                                                          |                    |
| a 9) L a c 10) A a c 12) A a c 13) N                                                         | a) 1<br>Lead compensator                                                                                                   | b) 2                                        |                     |                                                                   |                    |
| a c 10) A re a c 11) F a c 12) A a c 13) N                                                   | ·                                                                                                                          |                                             | U)                  | 3                                                                 | d) 0               |
| 10) A<br>re<br>a<br>c<br>11) F<br>a<br>c<br>12) A<br>a<br>c                                  | a) transient respor                                                                                                        | is used to improv                           | e                   |                                                                   |                    |
| 10) A re a c 11) F a c 12) A a c 13) N                                                       | ,                                                                                                                          | ise                                         | b)                  | steady state res                                                  | sponse             |
| 11) F<br>a<br>c<br>12) A<br>a<br>c<br>13) N                                                  | c) both a) and b)                                                                                                          |                                             | d)                  | none of the abo                                                   | ove                |
| 11) F<br>a<br>c<br>12) A<br>a<br>c                                                           | Adding a pole to a epresents a                                                                                             |                                             |                     |                                                                   | compensator        |
| 11) F<br>a<br>c<br>12) A<br>a<br>c                                                           | a) lead                                                                                                                    |                                             | b)                  | lag                                                               |                    |
| a<br>c<br>12) A<br>a<br>c<br>13) N                                                           | c) lead-lag                                                                                                                |                                             | d)                  | lag-lead                                                          |                    |
| c<br>12) A<br>a<br>c<br>13) N                                                                | or type I system v                                                                                                         | vith parabolic inpu                         | ıt, th              | he steady state                                                   | error is           |
| 12) A<br>a<br>c<br>13) N                                                                     | a) zero                                                                                                                    |                                             | b)                  | finite constant                                                   |                    |
| a<br>c<br>13) N                                                                              | c) infinite                                                                                                                |                                             | d)                  | indeterminate                                                     |                    |
| c<br>13) N                                                                                   | A system is stable                                                                                                         | for                                         |                     |                                                                   |                    |
| 13) N                                                                                        | a) G.M. and P.M. I                                                                                                         | ooth +ve                                    | b)                  | G.M. and P.M.                                                     | both –ve           |
| •                                                                                            | c) G.M. –ve                                                                                                                |                                             | d)                  | P.M. –ve                                                          |                    |
|                                                                                              | 1                                                                                                                          | left hand of s-plar                         | ne it               | f characteristic e                                                | equation is        |
| a                                                                                            | Number of roots in $6^3 - 48^2 + 8 + 6 = 0$                                                                                |                                             | c)                  | 3                                                                 | d) 0               |
| 14) T                                                                                        |                                                                                                                            | b) 2                                        | ٥,                  |                                                                   | ,                  |
| a                                                                                            | $s^3 - 4s^2 + s + 6 = 0$                                                                                                   | ,                                           | ,                   |                                                                   | ,                  |

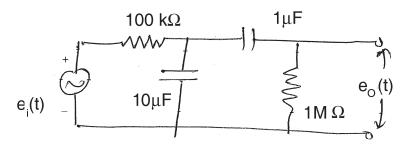


| Seat |  |
|------|--|
| No.  |  |

# T.E. (Part – II) (Biomedical Engg.) (CGPA) Examination, 2018 CONTROL SYSTEMS

Day and Date: Friday, 18-05-2018

Time: 2.30 p.m. to 5.30 p.m.


#### SECTION - I

#### 2. Attempt any four questions :

 $(4 \times 4 = 16)$ 

Marks: 56

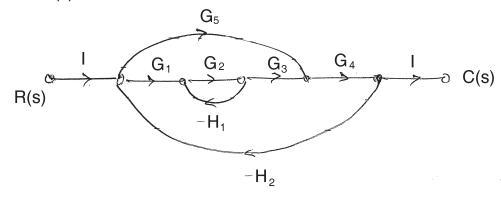
- Define and differentiate between translational and rotational system with each of example.
- 2) Derive the transfer function of simple closed loop system.
- 3) Draw the block diagram for given electric circuit and hence evaluate the transfer function  $E_{\rm o}(s)/E_{\rm i}(s)$ .



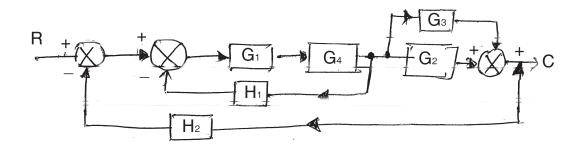
- 4) Describe any four properties of signal flow graph.
- 5) Define and compare between relative stability and absolute stability.

### 3. Attempt any two questions:

 $(6 \times 2 = 12)$ 


1) Find the range of values of 'k' for which the following system is stable.

a) 
$$s^4 + ks^3 + s^2 + s + 1 = 0$$

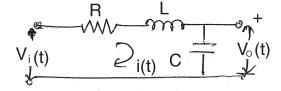

b) 
$$G(s) H(s) = \frac{k}{(s+2)(s+4)(s^2+6s+25)}$$
.



2) Find  $\frac{C(s)}{R(s)}$  by using Mason's gain formula.



3) Determine the transfer function C(s)/R(s) of system shown in fig.




SECTION - II

### 4. Attempt any 4 questions:

 $(4 \times 4 = 16)$ 


1) Define state variables and state model concept and obtain the state model for given electrical system.



- 2) Explain the angle and magnitude conditions of the root locus.
- 3) Define G.M. and P.M. and draw the Bode plot of stable system showing G.M. and P.M.



4) Draw the polar plot of a RC filter circuit shown below



- 5) Describe lag and lead-lag compensating networks with necessary figure.
- 5. Attempt any 2 questions:

- 1) Draw the Nyquist plot for a system with  $G(s) H(s) = \frac{10(s+3)}{s(s-1)}$  and comment on the closed loop stability.
- 2) Sketch the Bode plot for following transfer function and determine the system gain cross over frequency and phase cross over frequency  $G(s) \, H(s) = \frac{80(s+5)}{s^2(s+50)} \, .$
- 3) Sketch the root locus for system with  $G(s) H(s) = \frac{k(s+4)}{s(s^2+2s+2)}$ .

**SLR-TC - 458** 

| Seat |  |
|------|--|
| No.  |  |

### T.E. (Part – II) (Biomedical Engineering) (CGPA) Examination, 2018 **DIGITAL SIGNAL PROCESSING**

Day and Date: Monday, 21-5-2018 Total Marks: 70

Time: 2.30 p.m. to 5.30 p.m.

- Instructions: 1) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book Page No. 3. Each question carries one mark.
  - 2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

|      | MCQ/Objective                                                       | e Type Questions                      |
|------|---------------------------------------------------------------------|---------------------------------------|
| Dura | ation : 30 Minutes                                                  | Marks : 14                            |
| 1.   | Choose the correct answer:                                          | 14                                    |
|      | 1) The region of convergence of $x/(3)$                             | $1+2x+x^2$ ) is                       |
|      | a) 0 b) 1                                                           | c) Negative d) Positive               |
|      | 2) The transforming relations perform                               | ned by DTFT are                       |
|      | a) Linearity                                                        | b) Modulation                         |
|      | c) Shifting and convolution                                         | d) All above                          |
|      | 3) The circular convolution of the sec $X_2(n) = \{1, 2, 3, 4\}$ is | quences $X_1(n) = \{2, 1, 2, 1\}$ and |
|      | a) {14, 14, 16, 16}                                                 | b) {16, 16, 14, 14}                   |
|      | c) {2, 3, 6, 4}                                                     | d) {14, 16, 14, 16}                   |
|      | 4) To reduce side lobes inspecification has to be optimised.        | _ region of the filter the frequency  |
|      | a) Stop band                                                        | b) Pass band                          |
|      | c) Transition band                                                  | d) None of above                      |

| 5)  | The values of cut off frequencies in general depend on   |                                     |       |                                  |                   |                                  |  |
|-----|----------------------------------------------------------|-------------------------------------|-------|----------------------------------|-------------------|----------------------------------|--|
|     | a) Type of the window                                    |                                     |       | b) Length of the window          |                   |                                  |  |
|     | c) None of above                                         |                                     | d)    | Both a) and b                    | )                 |                                  |  |
| 6)  | The equation for free                                    | quency WK in the                    | e fre | equency respo                    | nse               | e of an FIR filter               |  |
|     | is                                                       |                                     |       |                                  |                   |                                  |  |
| 7)  | a) $\frac{\pi}{M}$ (K + $\alpha$ )<br>IJR filters are of | b) $\frac{4\pi}{M}$ (K + $\alpha$ ) | c)    | $\frac{8\pi}{M}$ (K + $\alpha$ ) | d)                | $\frac{2\pi}{M}$ (K + $\alpha$ ) |  |
| • , | a) Recursive                                             | Tididio:                            | h)    | Non-recursive                    | ż                 |                                  |  |
|     | c) Reversive                                             |                                     | •     | Non-reversive                    |                   |                                  |  |
| 8)  | In frequency samplir                                     | ng method transit                   | ,     |                                  |                   | e of                             |  |
| ,   | a) π/M filters o                                         | _                                   |       |                                  | -                 |                                  |  |
| 9)  | filters                                                  | exhibit their depe                  | nde   | ency upon the                    | sys               | stem design for                  |  |
|     | the stability purpose                                    |                                     |       |                                  |                   |                                  |  |
|     | a) DFT                                                   | b) FIR                              | c)    | IIR                              | d)                | FFT                              |  |
| 10) | The sensitivity of filter                                | er coefficient qua                  | ntiz  | ation for FIR f                  | iltei             | r is                             |  |
|     | a) Low                                                   | b) Moderate                         | c)    | High                             | d)                | Unpredictable                    |  |
| 11) | For a linear phase fi                                    | Iter, if Z, is zero t               | hen   | , the value of                   | Z <sup>−1</sup> , | or                               |  |
|     | a) Zero                                                  | b) Unity                            | c)    | Infinity                         | d)                | Unpredictable                    |  |
| 12) | If x(n) and x(k) are a                                   | n N-point DFT pa                    | air,  | the X(K + N) =                   | =                 | ?                                |  |
|     | a) X (– K)                                               | b) - X (K)                          | c)    | X (K)                            | d)                | None of above                    |  |
| 13) | ROC does not have                                        |                                     |       |                                  |                   |                                  |  |
|     | a) Zeros                                                 |                                     | b)    | Poles                            |                   |                                  |  |
|     | c) Negative value                                        |                                     | d)    | Positive value                   | es                |                                  |  |
| 14) | Time shifting of disc                                    | rete time signal n                  | nea   | ns                               | _                 |                                  |  |
|     | a) $Y(n] = X(n - k]$                                     |                                     | b)    | Y(n] = X (-n)                    | – k]              |                                  |  |
|     | c) $Y(n] = -X (n - k)$                                   | ]                                   | d)    | Y(n] = X (n +                    | k]                |                                  |  |
|     |                                                          |                                     |       |                                  |                   |                                  |  |





| Seat |  |
|------|--|
| No.  |  |

# T.E. (Part – II) (Biomedical Engineering) (CGPA) Examination, 2018 DIGITAL SIGNAL PROCESSING

Day and Date: Monday, 21-5-2018 Marks: 56

Time: 2.30 p.m. to 5.30 p.m.

$$SECTION - I (4 \times 4 = 16)$$

- 2. 1) List any five properties of DFT and describe any two of it.
  - 2) Find the DFT of following finite duration sequence of length L.

$$x (n) = \begin{cases} A, & \text{for } 0 \le n \le 2 - 1 \\ 0, & \text{otherwise} \end{cases}.$$

- 3) Given  $x(n) = \{0, 1, 2, 3\}$ . Find x(k) using DITFFT algorithm.
- 4) Distinguish between linear circular convulsion of two sequences with an example.
- 5) Explain any two FIR filter realisation methods.

### 3. Attempt any 2 questions:

- 1) Obtain direct form and cascade form realisation for the transfer function of FIR system given by  $H(z) = \left(1 \frac{1}{4}Z^{-1} + \frac{3}{8}Z^{-2}\right)\left(1 \frac{1}{8}Z^{-1} \frac{1}{2}Z^{-2}\right)$ .
- 2) Determine DFT (8 point) for continuous time signal  $x(t) = \sin(2\pi ft)$  with f = 50 Hz.
- 3) Define and explain following term:
  - a) Auto correlation
  - b) Cross correlation
  - c) Circular correlation.

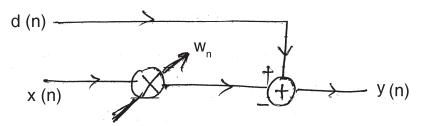
## 

#### SECTION - II

-4-

4. Attempt any 4 questions:

 $(4 \times 4 = 16)$ 


- 1) Apply bilinear transformation to,  $H(s) = \frac{2}{(s+1)(s+3)}$  with T = 0.1s.
- 2) The length of FIR filter is 13. If the filters has a linear phase show that  $\sum_{1}^{M=1/2} h(n) \sin \omega \, (T-n) = 0 \, .$
- 3) Convert the analog filter into a digital filter whose system function is,  $H(s) = \frac{s + 0.2}{(s + 0.2)^2 + 9}.$
- 4) Compare between rectangular window and Hanning window.
- 5) Determine the unit sample response of the ideal low pass filter and mention why it is not realisable?
- 5. Attempt any 2 questions:

 $(6 \times 2 = 12)$ 

1) Determine the parallel realization of IIR digital filter transfer function

$$H(z) = \frac{3(2z^2 + 5z + 4)}{(2z + 1)(z + 2)}.$$

2) Consider the single weight adoption filter as shown:



- a) Write down the LMS algorithm for updating weight w.
- 3) Write a short note on:
  - a) Sign error LMS algorithm
  - b) Exponentially weighted LMS algorithm.

|--|--|

## **SLR-TC - 458**

| Seat | l   |   |
|------|-----|---|
| No.  | Set | Q |

# T.E. (Part – II) (Biomedical Engineering) (CGPA) Examination, 2018 DIGITAL SIGNAL PROCESSING

| Day and Date : Monday, 21-5-2018 Total Marks Time : 2.30 p.m. to 5.30 p.m.                                                                                                                                                                                                                      |                                      |                            |                                           |           | 70               |                   |                |      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|----------------------------|-------------------------------------------|-----------|------------------|-------------------|----------------|------|
| <ul> <li>Instructions: 1) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book Page No. 3. Each question carries one mark.</li> <li>2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.</li> </ul> |                                      |                            |                                           |           |                  |                   |                |      |
|                                                                                                                                                                                                                                                                                                 |                                      |                            | MCQ/Objective T                           | уре       | Questions        |                   |                |      |
| Durat                                                                                                                                                                                                                                                                                           | ioi                                  | n : 30 Minutes             |                                           |           |                  |                   | Marks:         | : 14 |
| 1. (                                                                                                                                                                                                                                                                                            | Ch                                   | oose the correct a         | nswer:                                    |           |                  |                   |                | 14   |
| 1) In frequency sampling method transition band is a multiple of                                                                                                                                                                                                                                |                                      |                            |                                           |           |                  |                   |                |      |
| 2                                                                                                                                                                                                                                                                                               | 2)                                   | a) $\frac{\pi}{M}$ filter  | b) $\frac{2\pi}{M}$ rs exhibit their depo | c)<br>end | $\frac{\pi}{2M}$ |                   | 2πM            |      |
| _                                                                                                                                                                                                                                                                                               | ,                                    | the stability purpo        |                                           | 0110      | oney apon the    | Oy c              | nom decign for |      |
|                                                                                                                                                                                                                                                                                                 |                                      | a) DFT                     | b) FIR                                    | c)        | IIR              | d)                | FFT            |      |
| 3                                                                                                                                                                                                                                                                                               | 3)                                   | The sensitivity of         | filter coefficient qua                    | antiz     | zation for FIR f | ilte              | r is           |      |
|                                                                                                                                                                                                                                                                                                 |                                      | a) Low                     | b) Moderate                               | c)        | High             | d)                | Unpredictable  |      |
| 4                                                                                                                                                                                                                                                                                               | -                                    | For a linear phase 1/Z, is | e filter, if Z, is zero                   | ther      | n, the value of  | Z <sup>−1</sup> , | or             |      |
|                                                                                                                                                                                                                                                                                                 |                                      | a) Zero                    | b) Unity                                  | c)        | Infinity         | d)                | Unpredictable  |      |
| 5                                                                                                                                                                                                                                                                                               | 5)                                   | If x(n) and x(k) are       | e an N-point DFT p                        | air,      | the $X(K + N) =$ | =                 | ?              |      |
|                                                                                                                                                                                                                                                                                                 |                                      | a) X (– K)                 | b) - X (K)                                | c)        | X (K)            | d)                | None of above  |      |
| 6                                                                                                                                                                                                                                                                                               | 3)                                   | ROC does not ha            | ve                                        |           |                  |                   |                |      |
|                                                                                                                                                                                                                                                                                                 |                                      | a) Zeros                   |                                           | b)        | Poles            |                   |                |      |
|                                                                                                                                                                                                                                                                                                 | c) Negative value d) Positive values |                            |                                           |           |                  |                   |                |      |

a) Recursivec) Reversive

| 7)   | Time shifting of discrete time signal n                                | neans                                                                   |
|------|------------------------------------------------------------------------|-------------------------------------------------------------------------|
|      | a) $Y(n] = X(n - k]$                                                   | b) $Y(n] = X (-n - k]$                                                  |
|      | c) $Y(n] = -X (n-k]$                                                   | d) $Y(n] = X (n + k]$                                                   |
| 8)   | The region of convergence of $x/(1+2)$                                 | $2x + x^2$ ) is                                                         |
|      | a) 0 b) 1                                                              | c) Negative d) Positive                                                 |
| 9)   | The transforming relations performed                                   | l by DTFT are                                                           |
|      | a) Linearity                                                           | b) Modulation                                                           |
|      | c) Shifting and convolution                                            | d) All above                                                            |
| 10)  | The circular convolution of the seque $X_2(n) = \{1, 2, 3, 4\}$ is     | ences $X_1(n) = \{2, 1, 2, 1\}$ and                                     |
|      | a) {14, 14, 16, 16}                                                    | b) {16, 16, 14, 14}                                                     |
|      | c) {2, 3, 6, 4}                                                        | d) {14, 16, 14, 16}                                                     |
| l 1) | To reduce side lobes in respecification has to be optimised.           | egion of the filter the frequency                                       |
|      | a) Stop band                                                           | b) Pass band                                                            |
|      | c) Transition band                                                     | d) None of above                                                        |
| 12)  | The values of cut off frequencies in g                                 | eneral depend on                                                        |
|      | a) Type of the window                                                  | b) Length of the window                                                 |
|      | c) None of above                                                       | d) Both a) and b)                                                       |
| 13)  | The equation for frequency WK in the is                                | e frequency response of an FIR filter                                   |
|      | a) $\frac{\pi}{M}$ (K + $\alpha$ ) b) $\frac{4\pi}{M}$ (K + $\alpha$ ) | c) $\frac{8\pi}{M}$ (K + $\alpha$ ) d) $\frac{2\pi}{M}$ (K + $\alpha$ ) |
| 14)  | IJR filters are of nature                                              |                                                                         |

b) Non-recursive

d) Non-reversive







| Seat |  |
|------|--|
| No.  |  |

# T.E. (Part – II) (Biomedical Engineering) (CGPA) Examination, 2018 DIGITAL SIGNAL PROCESSING

Day and Date: Monday, 21-5-2018 Marks: 56

Time: 2.30 p.m. to 5.30 p.m.

SECTION – I 
$$(4\times4=16)$$

- 2. 1) List any five properties of DFT and describe any two of it.
  - 2) Find the DFT of following finite duration sequence of length L.

$$x \ (n) = \begin{cases} A, & \text{for } 0 \leq n \leq 2-1 \\ 0, & \text{otherwise} \end{cases}.$$

- 3) Given  $x(n) = \{0, 1, 2, 3\}$ . Find x(k) using DITFFT algorithm.
- 4) Distinguish between linear circular convulsion of two sequences with an example.
- 5) Explain any two FIR filter realisation methods.

### 3. Attempt any 2 questions:

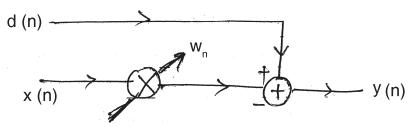
- 1) Obtain direct form and cascade form realisation for the transfer function of FIR system given by  $H(z) = \left(1 \frac{1}{4}Z^{-1} + \frac{3}{8}Z^{-2}\right)\left(1 \frac{1}{8}Z^{-1} \frac{1}{2}Z^{-2}\right)$ .
- 2) Determine DFT (8 point) for continuous time signal  $x(t) = \sin(2\pi ft)$  with f = 50 Hz.
- 3) Define and explain following term:
  - a) Auto correlation
  - b) Cross correlation
  - c) Circular correlation.

## 

#### SECTION - II

4. Attempt any 4 questions:

 $(4 \times 4 = 16)$ 


- 1) Apply bilinear transformation to,  $H(s) = \frac{2}{(s+1)(s+3)}$  with T = 0.1s.
- 2) The length of FIR filter is 13. If the filters has a linear phase show that  $\sum_{1}^{M=1/2} h(n) \sin \omega \, (T-n) = 0 \, .$
- 3) Convert the analog filter into a digital filter whose system function is,  $H(s) = \frac{s+0.2}{(s+0.2)^2+9}\,.$
- 4) Compare between rectangular window and Hanning window.
- 5) Determine the unit sample response of the ideal low pass filter and mention why it is not realisable?
- 5. Attempt any 2 questions:

 $(6 \times 2 = 12)$ 

1) Determine the parallel realization of IIR digital filter transfer function

$$H(z) = \frac{3(2z^2 + 5z + 4)}{(2z + 1)(z + 2)}.$$

2) Consider the single weight adoption filter as shown:



- a) Write down the LMS algorithm for updating weight w.
- 3) Write a short note on:
  - a) Sign error LMS algorithm
  - b) Exponentially weighted LMS algorithm.

**SLR-TC - 458** 

| Set | D |
|-----|---|
| Set | H |

Seat No.

#### T.E. (Part – II) (Biomedical Engineering) (CGPA) Examination, 2018 DIGITAL SIGNAL PROCESSING

Day and Date: Monday, 21-5-2018 Total Marks: 70

Time: 2.30 p.m. to 5.30 p.m.

Instructions: 1) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book Page No. 3. Each question carries one mark.

> 2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

|      |      | N                                                        | ICQ/Objective Ty    | ype Questions       |                                     |           |
|------|------|----------------------------------------------------------|---------------------|---------------------|-------------------------------------|-----------|
| Dura | atio | n : 30 Minutes                                           |                     |                     |                                     | Marks: 14 |
| 1.   | Ch   | noose the correct ans                                    | swer:               |                     |                                     | 14        |
|      | 1)   | The values of cut of                                     | ff frequencies in g | jeneral depend or   | າ                                   |           |
|      |      | a) Type of the wind                                      | low                 | b) Length of the    | window                              |           |
|      |      | c) None of above                                         |                     | d) Both a) and b    | o)                                  |           |
|      | 2)   | The equation for fre                                     | equency WK in the   | e frequency respo   | onse of an FII                      | R filter  |
|      |      | a) $\frac{\pi}{M}$ (K + $\alpha$ )<br>IJR filters are of |                     |                     | d) $\frac{2\pi}{M}$ (K + $\epsilon$ | α)        |
|      | 3)   | a) Recursive                                             | riature.            | b) Non-recursive    | Δ                                   |           |
|      |      | c) Reversive                                             |                     | d) Non-reversive    |                                     |           |
|      | 4)   | In frequency sampli                                      | ing method transi   | ,                   |                                     |           |
|      | 7)   |                                                          | •                   |                     | •                                   |           |
|      |      | a) $\frac{\pi}{M}$                                       | b) $\frac{2\pi}{M}$ | c) $\frac{\pi}{2M}$ | d) 2πM                              |           |
|      | 5)   | filters                                                  | exhibit their depe  | endency upon the    | system desi                         | gn for    |
|      |      | the stability purpose                                    |                     |                     | -                                   |           |
|      |      | a) DFT                                                   | b) FIR              | c) IIR              | d) FFT                              |           |

| 6)  | The sensitivity of filt                               | er coefficient qua   | antiz | ation for FIR f                               | ilte         | r is          |  |  |
|-----|-------------------------------------------------------|----------------------|-------|-----------------------------------------------|--------------|---------------|--|--|
| •   | a) Low                                                | b) Moderate          |       |                                               |              | Unpredictable |  |  |
| 7)  | For a linear phase find 1/Z, is                       | ilter, if Z, is zero | ther  | n, the value of                               | <b>Z</b> −1, | or            |  |  |
|     | a) Zero                                               | b) Unity             | c)    | Infinity                                      | d)           | Unpredictable |  |  |
| 8)  | If x(n) and x(k) are a                                | an N-point DFT p     | air,  | the $X(K + N) =$                              | =            | ?             |  |  |
|     | a) X (– K)                                            | b) – X (K)           | c)    | X (K)                                         | d)           | None of above |  |  |
| 9)  | ROC does not have                                     |                      |       |                                               |              |               |  |  |
|     | a) Zeros                                              |                      | b)    | Poles                                         |              |               |  |  |
|     | c) Negative value                                     |                      | d)    | Positive value                                | es           |               |  |  |
| 10) | Time shifting of disc                                 | _                    |       |                                               |              |               |  |  |
|     | a) $Y(n] = X(n - k]$                                  |                      |       | b) $Y(n] = X (-n-k]$<br>d) $Y(n] = X (n + k]$ |              |               |  |  |
|     | c) $Y(n] = -X(n-k)$                                   | (]                   | d)    | Y(n] = X(n +                                  | k]           |               |  |  |
| 11) | The region of conve                                   | ergence of $x/(1+x)$ | 2x +  | - x <sup>2</sup> ) is                         |              |               |  |  |
|     | a) 0                                                  | b) 1                 | c)    | Negative                                      | d)           | Positive      |  |  |
| 12) | The transforming re                                   | lations performed    | d by  | DTFT are                                      |              |               |  |  |
|     | a) Linearity                                          |                      | b)    | Modulation                                    |              |               |  |  |
|     | c) Shifting and conv                                  | volution             | d)    | All above                                     |              |               |  |  |
| 13) | The circular convolution $X_2(n) = \{1, 2, 3, 4\}$ is |                      | ence  | es X <sub>1</sub> (n) = {2, 1                 | , 2,         | 1} and        |  |  |
|     | a) {14, 14, 16, 16}                                   |                      | b)    | {16, 16, 14, 1                                | 4}           |               |  |  |
|     | c) {2, 3, 6, 4}                                       |                      | d)    | {14, 16, 14, 1                                | 6}           |               |  |  |
| 14) | To reduce side lobe specification has to              |                      | regi  | on of the filter                              | the          | frequency     |  |  |
|     | a) Stop band                                          |                      | b)    | Pass band                                     |              |               |  |  |
|     | c) Transition band                                    |                      | d)    | None of abov                                  | е            |               |  |  |
|     |                                                       |                      |       |                                               |              |               |  |  |



| Seat |  |
|------|--|
| No.  |  |

# T.E. (Part – II) (Biomedical Engineering) (CGPA) Examination, 2018 DIGITAL SIGNAL PROCESSING

Day and Date: Monday, 21-5-2018 Marks: 56

Time: 2.30 p.m. to 5.30 p.m.

SECTION – I 
$$(4\times4=16)$$

- 2. 1) List any five properties of DFT and describe any two of it.
  - 2) Find the DFT of following finite duration sequence of length L.

$$x (n) = \begin{cases} A, & \text{for } 0 \le n \le 2 - 1 \\ 0, & \text{otherwise} \end{cases}.$$

- 3) Given  $x(n) = \{0, 1, 2, 3\}$ . Find x(k) using DITFFT algorithm.
- 4) Distinguish between linear circular convulsion of two sequences with an example.
- 5) Explain any two FIR filter realisation methods.
- 3. Attempt any 2 questions:

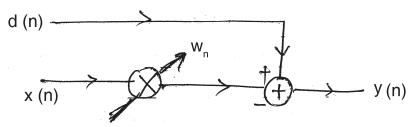
- 1) Obtain direct form and cascade form realisation for the transfer function of FIR system given by  $H(z) = \left(1 \frac{1}{4}Z^{-1} + \frac{3}{8}Z^{-2}\right)\left(1 \frac{1}{8}Z^{-1} \frac{1}{2}Z^{-2}\right)$ .
- 2) Determine DFT (8 point) for continuous time signal  $x(t) = \sin(2\pi ft)$  with f = 50 Hz.
- 3) Define and explain following term:
  - a) Auto correlation
  - b) Cross correlation
  - c) Circular correlation.

### 

#### SECTION - II

4. Attempt any 4 questions:

 $(4 \times 4 = 16)$ 


- 1) Apply bilinear transformation to,  $H(s) = \frac{2}{(s+1)(s+3)}$  with T = 0.1s.
- 2) The length of FIR filter is 13. If the filters has a linear phase show that  $\sum_{n=1/2}^{M=1/2} h(n) \sin \omega \, (T-n) = 0 \, .$
- 3) Convert the analog filter into a digital filter whose system function is,  $H(s) = \frac{s + 0.2}{(s + 0.2)^2 + 9}.$
- 4) Compare between rectangular window and Hanning window.
- 5) Determine the unit sample response of the ideal low pass filter and mention why it is not realisable?
- 5. Attempt any 2 questions:

 $(6 \times 2 = 12)$ 

1) Determine the parallel realization of IIR digital filter transfer function

$$H(z) = \frac{3(2z^2 + 5z + 4)}{(2z + 1)(z + 2)}.$$

2) Consider the single weight adoption filter as shown:



- a) Write down the LMS algorithm for updating weight w.
- 3) Write a short note on:
  - a) Sign error LMS algorithm
  - b) Exponentially weighted LMS algorithm.



**SLR-TC - 458** 

Seat No.

Set

et S

# T.E. (Part – II) (Biomedical Engineering) (CGPA) Examination, 2018 DIGITAL SIGNAL PROCESSING

Day and Date: Monday, 21-5-2018 Total Marks: 70

Time: 2.30 p.m. to 5.30 p.m.

- Instructions: 1) Q. No. 1 is compulsory. It should be solved in first
  30 minutes in Answer Book Page No. 3. Each question
  carries one mark.
  - 2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

#### MCQ/Objective Type Questions

|     |                                                                                         | ,           | , , , , , , , , , , , , , , , , , , , , |                  |      |  |  |
|-----|-----------------------------------------------------------------------------------------|-------------|-----------------------------------------|------------------|------|--|--|
| Dur | ation: 30 Minutes                                                                       |             |                                         | Marks            | : 14 |  |  |
| 1.  | Choose the correct answer :                                                             |             |                                         |                  |      |  |  |
|     | 1) The sensitivity of filter coefficient quantization for FIR filter is                 |             |                                         |                  |      |  |  |
|     | a) Low                                                                                  | b) Moderate | c) High                                 | d) Unpredictable |      |  |  |
|     | 2) For a linear phase filter, if Z, is zero then, the value of $Z^{-1}$ , or $1/Z$ , is |             |                                         |                  |      |  |  |
|     | a) Zero                                                                                 | b) Unity    | c) Infinity                             | d) Unpredictable |      |  |  |
|     | 3) If x(n) and x(k) are an N-point DFT pair, the X(K + N) =?                            |             |                                         |                  |      |  |  |
|     | a) X (– K)                                                                              | b) - X (K)  | c) X (K)                                | d) None of above |      |  |  |
|     | 4) ROC does not h                                                                       | nave        |                                         |                  |      |  |  |
|     | a) Zeros                                                                                |             | b) Poles                                |                  |      |  |  |
|     | c) Negative va                                                                          | lue         | d) Positive va                          | alues            |      |  |  |
|     | 5) Time shifting of discrete time signal means                                          |             |                                         |                  |      |  |  |
|     | a) $Y(n] = X(n - k]$                                                                    |             | b) $Y(n] = X (-n - k]$                  |                  |      |  |  |
|     | c) $Y(n) = -X(r)$                                                                       | า – kl      | d) $Y(n) = X(r)$                        | า + kl           |      |  |  |



| 6)                                                                                          | The region of convergence of $x/(1+2x+x^2)$ is                                                       |                               |                                  |                                     |  |  |
|---------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-------------------------------|----------------------------------|-------------------------------------|--|--|
|                                                                                             | a) 0 b) 1                                                                                            | c)                            | Negative                         | d) Positive                         |  |  |
| 7)                                                                                          | The transforming relations performed by DTFT are                                                     |                               |                                  |                                     |  |  |
|                                                                                             | a) Linearity                                                                                         |                               | b) Modulation                    |                                     |  |  |
|                                                                                             | c) Shifting and convolution                                                                          |                               | d) All above                     |                                     |  |  |
| 8)                                                                                          | The circular convolution of the sequences $X_1(n) = \{2, 1, 2, 1\}$ and $X_2(n) = \{1, 2, 3, 4\}$ is |                               |                                  |                                     |  |  |
|                                                                                             | a) {14, 14, 16, 16}                                                                                  |                               | b) {16, 16, 14, 14}              |                                     |  |  |
|                                                                                             | c) {2, 3, 6, 4}                                                                                      |                               | d) {14, 16, 14, 16}              |                                     |  |  |
| 9)                                                                                          | To reduce side lobes in _ specification has to be op                                                 | on of the filter t            | he frequency                     |                                     |  |  |
|                                                                                             | a) Stop band                                                                                         |                               | b) Pass band                     |                                     |  |  |
|                                                                                             | c) Transition band                                                                                   |                               | d) None of above                 |                                     |  |  |
| 10)                                                                                         | The values of cut off freq                                                                           |                               |                                  |                                     |  |  |
|                                                                                             | a) Type of the window                                                                                |                               | b) Length of the window          |                                     |  |  |
|                                                                                             | c) None of above                                                                                     |                               | d) Both a) and b)                |                                     |  |  |
| 11)                                                                                         | The equation for frequencis                                                                          | cy WK in the fre              | equency respor                   | nse of an FIR filter                |  |  |
| 10)                                                                                         | a) $\frac{\pi}{M}$ (K + $\alpha$ ) b) $\frac{4}{M}$                                                  | $\frac{4\pi}{M}(K+\alpha)$ c) | $\frac{8\pi}{M}$ (K + $\alpha$ ) | d) $\frac{2\pi}{M}$ (K + $\alpha$ ) |  |  |
| 12)                                                                                         | IJR filters are of                                                                                   |                               | Non rocuroixo                    |                                     |  |  |
|                                                                                             | a) Recursive                                                                                         | •                             | Non-recursive                    |                                     |  |  |
| c) Reversive d) Non-reversive  13) In frequency sampling method transition band is a multip |                                                                                                      |                               |                                  |                                     |  |  |
| 10)                                                                                         |                                                                                                      |                               |                                  | ipie oi                             |  |  |
|                                                                                             | a) $\frac{\pi}{M}$ b) $\frac{2}{M}$                                                                  | $\frac{\pi}{\sqrt{1}}$ c)     | $\frac{\pi}{2M}$                 | d) 2πM                              |  |  |
| 14)                                                                                         | filters exhibit their dependency upon the system design for the stability purpose.                   |                               |                                  |                                     |  |  |
|                                                                                             | a) DFT b) F                                                                                          | IR c)                         | IIR                              | d) FFT                              |  |  |
|                                                                                             |                                                                                                      |                               |                                  |                                     |  |  |





Seat No.

# T.E. (Part – II) (Biomedical Engineering) (CGPA) Examination, 2018 DIGITAL SIGNAL PROCESSING

-3-

Day and Date: Monday, 21-5-2018 Marks: 56

Time: 2.30 p.m. to 5.30 p.m.

SECTION – I 
$$(4\times4=16)$$

- 2. 1) List any five properties of DFT and describe any two of it.
  - 2) Find the DFT of following finite duration sequence of length L.

$$x \ (n) = \begin{cases} A, & \text{for } 0 \le n \le 2-1 \\ 0, & \text{otherwise} \end{cases}.$$

- 3) Given  $x(n) = \{0, 1, 2, 3\}$ . Find x(k) using DITFFT algorithm.
- 4) Distinguish between linear circular convulsion of two sequences with an example.
- 5) Explain any two FIR filter realisation methods.

### 3. Attempt any 2 questions:

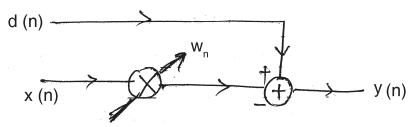
- 1) Obtain direct form and cascade form realisation for the transfer function of FIR system given by  $H(z) = \left(1 \frac{1}{4}Z^{-1} + \frac{3}{8}Z^{-2}\right)\left(1 \frac{1}{8}Z^{-1} \frac{1}{2}Z^{-2}\right)$ .
- 2) Determine DFT (8 point) for continuous time signal  $x(t) = \sin(2\pi ft)$  with f = 50 Hz.
- 3) Define and explain following term:
  - a) Auto correlation
  - b) Cross correlation
  - c) Circular correlation.

### 

#### SECTION - II

4. Attempt any 4 questions:

 $(4 \times 4 = 16)$ 


- 1) Apply bilinear transformation to,  $H(s) = \frac{2}{(s+1)(s+3)}$  with T = 0.1s.
- 2) The length of FIR filter is 13. If the filters has a linear phase show that  $\sum_{1}^{M=1/2} h(n) \sin \omega \, (T-n) = 0 \, .$
- 3) Convert the analog filter into a digital filter whose system function is,  $H(s) = \frac{s + 0.2}{(s + 0.2)^2 + 9}.$
- 4) Compare between rectangular window and Hanning window.
- 5) Determine the unit sample response of the ideal low pass filter and mention why it is not realisable?
- 5. Attempt any 2 questions:

 $(6 \times 2 = 12)$ 

1) Determine the parallel realization of IIR digital filter transfer function

$$H(z) = \frac{3(2z^2 + 5z + 4)}{(2z + 1)(z + 2)}.$$

2) Consider the single weight adoption filter as shown:



- a) Write down the LMS algorithm for updating weight w.
- 3) Write a short note on:
  - a) Sign error LMS algorithm
  - b) Exponentially weighted LMS algorithm.

| Seat | Sat | D |
|------|-----|---|
| No.  | Set |   |

## T.E. (Biomedical) (Part – II) (CGPA) Examination, 2018 EMBEDDED SYSTEM

Day and Date: Wednesday, 23-5-2018 Total Marks: 70

Time: 2.30 p.m. to 5.30 p.m.

Instructions: 1) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book Page No. 3. Each question carries one mark.

2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

#### MCQ/Objective Type Questions

Duration: 30 Minutes Marks: 14

1. Choose the correct answer:

 $(1 \times 14 = 14)$ 

- 1) What are the essential tight constraint/s related to the design metrics of an embedded system?
  - a) Ability to fit on a single chip
  - b) Low power consumption
  - c) Fast data processing for real-time operations
  - d) All of the above
- 2) Which abstraction level undergo the compilation process by converting a sequential program into finite-state machine and register transfers while designing an embedded system?
  - a) System
- b) Behaviour
- c) RT
- d) Logic
- 3) Which memory storage is widely used in PCs and Embedded Systems?
  - a) SRAM
- b) DRAM
- c) Flash memory d) EEPROM
- 4) Which type of non-privileged processor mode is entered due to raising of high priority of an interrupt ?
  - a) User mode

- b) Fast Interrupt Mode (FIQ)
- c) Interrupt Mode (IRQ)
- d) Supervisor Mode (SVQ)
- 5) Which parameter/s is/are included in 'Time to market' design metric of an embedded system?
  - a) Time to prototype

- b) Time to refine
- c) Time to produce in bulk
- d) All of the above



| 6)  | SCI stands for                                                                                                                                                                                                 |                    |                         |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-------------------------|
| ŕ   | <ul><li>a) Serial Communication Internet</li><li>c) System Connection Interface</li></ul>                                                                                                                      | -                  | Interface               |
| 7)  | In a time-sharing operating system, when the time slot given to a process is completed, the process goes from the running state to the  a) Blocked state b) Ready state c) Suspended state d) Terminated state |                    |                         |
| 8)  | What kind of memory does an OTP a) SRAM b) RAM                                                                                                                                                                 | have ?<br>c) EPROM | d) DRAM                 |
| 9)  | Which of the following algorithms ten<br>a) First Come First Served<br>c) Earliest Deadline First                                                                                                              | b) Shortest Job F  | irst                    |
| 10) | If the resources are always preempt                                                                                                                                                                            | ed from the same p | process,                |
|     | can occur. a) Deadlock b) System crash                                                                                                                                                                         | c) Aging           | d) Starvation           |
| 11) | The problem of priority inversion car<br>a) Priority inheritance protocol<br>c) Both a) and b)                                                                                                                 | •                  | on protocol<br>entioned |
| 12) | What will happen if a non-recursive a) Starvation b) Deadlock                                                                                                                                                  |                    |                         |
| 13) | The keeps state informati a) CPU b) OS                                                                                                                                                                         |                    |                         |
| 14) | <ul> <li>μCOS-II task scheduling mechanism</li> <li>a) Cooperative as well as preemptive</li> <li>b) Cyclic only</li> <li>c) Preemptive only</li> <li>d) Preemptive as well as time slicing</li> </ul>         | re                 |                         |



| Seat |  |
|------|--|
| No.  |  |

# T.E. (Biomedical) (Part – II) (CGPA) Examination, 2018 EMBEDDED SYSTEM

Day and Date: Wednesday, 23-5-2018 Marks: 56

Time: 2.30 p.m. to 5.30 p.m.

#### SECTION - I

#### 2. Answer any four:

 $(4 \times 3 = 12)$ 

- 1) What are the different processor used in embedded system? Explain with their advantages and disadvantages.
- 2) Draw and explain bus architecture of ARM processor.
- 3) Explain in detail memory allocation program segment and data segment.
- 4) What is pipelining? Explain with an example and how it is advantage in processor?
- 5) Explain different memory devices and selection of memory for an Embedded system.

#### 3. Answer any two:

 $(2 \times 8 = 16)$ 

- 1) Draw the Embedded system hardware? Explain each hardware unit of the embedded system in detail.
- 2) Explain the following:
  - i) Watchdog timer
  - ii) USB
  - iii) Interrupt
  - iv) RTC.
- 3) Explain the following in detail :
  - i) I2C communication protocol
  - ii) Application of Embedded System in digital camera.

### 

#### SECTION - II

4. Answer any four:

 $(4 \times 3 = 12)$ 

- 1) Explain different C programing elements.
- 2) Explain inter task communication in RTOS.
- 3) Define task and explain different task states with diagram.
- 4) Draw and explain kernel structure of  $\mu$ COS-II.
- 5) Explain in detail operation of timer and memory management in RTOS.

5. Answer any two:

 $(2 \times 8 = 16)$ 

- 1) Draw and explain in detail interfacing of touch screen input to the embedded system.
- 2) Explain the following:
  - i) Semaphore
  - ii) Priority inversion problems.
- 3) Write short note on:
  - a) Embedded communication using GSM modem.
  - b) Interrupt Service Routine in an RTOS.

\_\_\_\_

|             |                                                                              |                                                     |                                                         | SLR-IC -                                                                        | 459    |
|-------------|------------------------------------------------------------------------------|-----------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------------------------------|--------|
| Seat<br>No. |                                                                              |                                                     |                                                         | Set                                                                             | Q      |
|             | T.E. (Biom                                                                   | nedical) (Part – II<br>EMBEDDI                      | ) (CGPA) Exami<br>ED SYSTEM                             | nation, 2018                                                                    |        |
| -           | and Date : Wedne<br>: 2.30 p.m. to 5.30                                      | •                                                   |                                                         | Total Marks                                                                     | s:70   |
|             |                                                                              | 30 minutes in A<br>carries one mark<br>Answer MCQ/O | nswer Book Page<br>:.<br>D <b>bjective type q</b> u     | be solved in first No. 3. Each question  nestions on Page I P. Set (P/Q/R/S) or | No. 3  |
| Durat       | ion : 30 Minutes                                                             | MCQ/Objective                                       | e Type Questions                                        | Mark                                                                            | s · 14 |
|             |                                                                              |                                                     |                                                         |                                                                                 |        |
|             | Choose the correct                                                           |                                                     |                                                         | (1×14                                                                           | 4=14)  |
| 1           | <ol> <li>What kind of mean</li> <li>a) SRAM</li> </ol>                       | emory does an OT<br>b) RAM                          | P have ?<br>c) EPROM                                    | d) DRAM                                                                         |        |
| 2           | <ol> <li>Which of the fol<br/>a) First Come I<br/>c) Earliest Dea</li> </ol> | First Served                                        | ends to minimize tl<br>b) Shortest Jo<br>d) Longest Jol |                                                                                 | ?      |
| 3           | can occur.                                                                   | are always preemb) System cra                       |                                                         | ne process,<br>d) Starvation                                                    | _      |
| 2           | 1) The problem of                                                            | priority inversion o                                |                                                         | rsion protocol                                                                  |        |
| 5           | 5) What will happe<br>a) Starvation                                          | en if a non-recursiv<br>b) Deadlock                 | re mutex is locked c) Aging                             | more than once? d) Signaling                                                    |        |
| 6           | •                                                                            | keeps state inform<br>b) OS                         |                                                         | e of I/O components.                                                            |        |

- 7)  $\mu \text{COS-II}$  task scheduling mechanism is
  - a) Cooperative as well as preemptive
  - b) Cyclic only
  - c) Preemptive only
  - d) Preemptive as well as time slicing round robin



| R-T | C - 459                                                                                                          | -2-                                                    |    |                                                      |                                                 |
|-----|------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|----|------------------------------------------------------|-------------------------------------------------|
| 8)  | What are the essert embedded system a) Ability to fit on a b) Low power con c) Fast data proced All of the above | ?<br>a single chip<br>sumption<br>essing for real-time |    |                                                      | esign metrics of an                             |
| 9)  | Which abstraction sequential program designing an embera) System                                                 | n into finite-state                                    | ma | chine and regis                                      | ss by converting a ter transfers while d) Logic |
| 10) | Which memory sto a) SRAM                                                                                         | orage is widely use<br>b) DRAM                         |    | n PCs and Embe<br>Flash memory                       | •                                               |
| 11) | Which type of non high priority of an ia) User mode c) Interrupt Mode                                            | nterrupt?                                              | b) | mode is entere<br>Fast Interrupt N<br>Supervisor Mod | Mode (FIQ)                                      |
| 12) | Which parameter/s embedded system a) Time to prototy c) Time to product                                          | ?<br>pe                                                | b) | me to market' d  Time to refine  All of the above    | -                                               |
| 13) | SCI stands for<br>a) Serial Commun<br>c) System Connec                                                           |                                                        | ,  | Serial Connect<br>None                               | Interface                                       |

14) In a time-sharing operating system, when the time slot given to a process

is completed, the process goes from the running state to the a) Blocked state

c) Suspended state

b) Ready state

d) Terminated state



| Seat |  |
|------|--|
| No.  |  |

# T.E. (Biomedical) (Part – II) (CGPA) Examination, 2018 EMBEDDED SYSTEM

Day and Date: Wednesday, 23-5-2018 Marks: 56

Time: 2.30 p.m. to 5.30 p.m.

#### SECTION - I

#### 2. Answer any four:

 $(4 \times 3 = 12)$ 

- 1) What are the different processor used in embedded system? Explain with their advantages and disadvantages.
- 2) Draw and explain bus architecture of ARM processor.
- 3) Explain in detail memory allocation program segment and data segment.
- 4) What is pipelining? Explain with an example and how it is advantage in processor?
- 5) Explain different memory devices and selection of memory for an Embedded system.

#### 3. Answer any two:

 $(2 \times 8 = 16)$ 

- 1) Draw the Embedded system hardware? Explain each hardware unit of the embedded system in detail.
- 2) Explain the following:
  - i) Watchdog timer
  - ii) USB
  - iii) Interrupt
  - iv) RTC.
- 3) Explain the following in detail:
  - i) I2C communication protocol
  - ii) Application of Embedded System in digital camera.

### 

#### SECTION - II

4. Answer any four:

 $(4 \times 3 = 12)$ 

- 1) Explain different C programing elements.
- 2) Explain inter task communication in RTOS.
- 3) Define task and explain different task states with diagram.
- 4) Draw and explain kernel structure of  $\mu$ COS-II.
- 5) Explain in detail operation of timer and memory management in RTOS.

5. Answer any two:

 $(2 \times 8 = 16)$ 

- 1) Draw and explain in detail interfacing of touch screen input to the embedded system.
- 2) Explain the following:
  - i) Semaphore
  - ii) Priority inversion problems.
- 3) Write short note on:
  - a) Embedded communication using GSM modem.
  - b) Interrupt Service Routine in an RTOS.

\_\_\_\_

can occur. a) Deadlock

|             |                                                                                         |                                                                                                               |              |                                                   | SLR-1       | TC —                    | 459     |
|-------------|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|--------------|---------------------------------------------------|-------------|-------------------------|---------|
| Seat<br>No. |                                                                                         |                                                                                                               |              |                                                   |             | Set                     | R       |
|             | T.E. (Biome                                                                             | edical) (Part – II)<br>EMBEDDEI                                                                               | •            | •                                                 | tion, 2018  | 3                       |         |
| •           | nd Date : Wedneso<br>2.30 p.m. to 5.30                                                  | •                                                                                                             |              |                                                   | Tota        | al Mark                 | s:70    |
|             | 2)                                                                                      | Q. No. 1 is compu<br>30 minutes in Ans<br>carries one mark.<br>Answer MCQ/Ob<br>only. Don't forge<br>of Page. | swer<br>ject | Book Page No                                      | tions on    | question<br><b>Page</b> | No. 3   |
| Durati      | on : 30 Minutes                                                                         | MCQ/Objective                                                                                                 | Туре         | Questions                                         |             | Mark                    | s: 14   |
| Durain      | on . So Minutes                                                                         |                                                                                                               |              |                                                   |             | iviain                  | .5 . 14 |
| 1. Cł       | noose the correct a                                                                     | answer:                                                                                                       |              |                                                   |             | (1×1                    | 4=14)   |
| 1)          | •                                                                                       | r/s is/are included i                                                                                         | n 'Ti        | me to market' o                                   | design metr | ric of a                | n       |
|             | embedded syste a) Time to proto                                                         |                                                                                                               | b)           | Time to refine                                    |             |                         |         |
|             | c) Time to produ                                                                        | • •                                                                                                           | •            | All of the abov                                   | е           |                         |         |
| 2)          | ) SCI stands for                                                                        |                                                                                                               |              |                                                   |             |                         |         |
|             | <ul><li>a) Serial Commu</li><li>c) System Conn</li></ul>                                | unication Internet ection Interface                                                                           |              | Serial Connection                                 | t Interface |                         |         |
| 3)          |                                                                                         |                                                                                                               | n the        |                                                   | to the      | proces                  | S       |
| 4)          | ) What kind of men<br>a) SRAM                                                           | mory does an OTP<br>b) RAM                                                                                    |              | e ?<br>EPROM                                      | d) DRAM     |                         |         |
| 5)          | <ul><li>Which of the follog</li><li>a) First Come Fi</li><li>c) Earliest Dead</li></ul> |                                                                                                               | b)           | o minimize the<br>Shortest Job F<br>Longest Job F | irst        | w time                  | ?       |

6) If the resources are always preempted from the same process, \_\_\_\_\_

b) System crash c) Aging

d) Starvation

| 7)  | The problem of priority inversion car<br>a) Priority inheritance protocol<br>c) Both a) and b)                                                                                                         | •                                         |                               |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-------------------------------|
| 8)  | What will happen if a non-recursive a) Starvation b) Deadlock                                                                                                                                          |                                           |                               |
| 9)  | The keeps state information a) CPU b) OS                                                                                                                                                               | on about the use of c) Kernel             | f I/O components.<br>d) Shell |
| 10) | <ul> <li>μCOS-II task scheduling mechanism</li> <li>a) Cooperative as well as preemptive</li> <li>b) Cyclic only</li> <li>c) Preemptive only</li> <li>d) Preemptive as well as time slicing</li> </ul> | /e                                        |                               |
| 11) | What are the essential tight constrained embedded system?  a) Ability to fit on a single chip b) Low power consumption c) Fast data processing for real-time d) All of the above                       |                                           | esign metrics of an           |
| 12) | Which abstraction level undergo the sequential program into finite-state designing an embedded system?                                                                                                 | machine and regis                         | ter transfers while           |
| 13) | <ul><li>a) System</li><li>b) Behaviour</li><li>Which memory storage is widely use</li><li>a) SRAM</li><li>b) DRAM</li></ul>                                                                            | ed in PCs and Emb                         | •                             |
| 14) | Which type of non-privileged proceshigh priority of an interrupt?  a) User mode c) Interrupt Mode (IRQ)                                                                                                | ssor mode is entere b) Fast Interrupt Mod | Mode (FIQ)                    |



| Seat |  |
|------|--|
| No.  |  |

# T.E. (Biomedical) (Part – II) (CGPA) Examination, 2018 EMBEDDED SYSTEM

Day and Date: Wednesday, 23-5-2018 Marks: 56

Time: 2.30 p.m. to 5.30 p.m.

#### SECTION - I

#### 2. Answer any four:

 $(4 \times 3 = 12)$ 

- 1) What are the different processor used in embedded system? Explain with their advantages and disadvantages.
- 2) Draw and explain bus architecture of ARM processor.
- 3) Explain in detail memory allocation program segment and data segment.
- 4) What is pipelining? Explain with an example and how it is advantage in processor?
- 5) Explain different memory devices and selection of memory for an Embedded system.

### 3. Answer any two:

 $(2 \times 8 = 16)$ 

- 1) Draw the Embedded system hardware? Explain each hardware unit of the embedded system in detail.
- 2) Explain the following:
  - i) Watchdog timer
  - ii) USB
  - iii) Interrupt
  - iv) RTC.
- 3) Explain the following in detail :
  - i) I2C communication protocol
  - ii) Application of Embedded System in digital camera.

### 

#### SECTION - II

4. Answer any four:

 $(4 \times 3 = 12)$ 

- 1) Explain different C programing elements.
- 2) Explain inter task communication in RTOS.
- 3) Define task and explain different task states with diagram.
- 4) Draw and explain kernel structure of  $\mu$ COS-II.
- 5) Explain in detail operation of timer and memory management in RTOS.

5. Answer any two:

 $(2 \times 8 = 16)$ 

- 1) Draw and explain in detail interfacing of touch screen input to the embedded system.
- 2) Explain the following:
  - i) Semaphore
  - ii) Priority inversion problems.
- 3) Write short note on:
  - a) Embedded communication using GSM modem.
  - b) Interrupt Service Routine in an RTOS.

\_\_\_\_

| Seat | Set |   |
|------|-----|---|
| No.  | Set | 5 |

# T.E. (Biomedical) (Part – II) (CGPA) Examination, 2018 EMBEDDED SYSTEM

| Day and Date : Wednesday, 23-5-2018 | Total Marks: 70 |
|-------------------------------------|-----------------|
|-------------------------------------|-----------------|

Time: 2.30 p.m. to 5.30 p.m.

d) All of the above

Instructions: 1) Q. No. 1 is compulsory. It should be solved in first
30 minutes in Answer Book Page No. 3. Each question
carries one mark.

2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

|         |                                                                               | of Page.                                                                   |               |                                    |
|---------|-------------------------------------------------------------------------------|----------------------------------------------------------------------------|---------------|------------------------------------|
| Duratio | on . 20 Minutes                                                               | MCQ/Objective                                                              | Type Question |                                    |
| Duratio | on: 30 Minutes                                                                |                                                                            |               | Marks: 14                          |
| 1. Ch   | oose the correc                                                               | et answer :                                                                |               | (1×14=14)                          |
| 1)      | can occur.                                                                    | , , , ,                                                                    |               | me process,                        |
|         | •                                                                             | b) System cras                                                             | , ,           | d) Starvation                      |
| 2)      | •                                                                             | f priority inversion ca<br>eritance protocol<br>l b)                       | •             |                                    |
| 3)      | What will happ a) Starvation                                                  | en if a non-recursive<br>b) Deadlock                                       |               | d more than once ?<br>d) Signaling |
| 4)      | Thea) CPU                                                                     |                                                                            |               | se of I/O components.<br>d) Shell  |
| 5)      | <ul><li>a) Cooperative</li><li>b) Cyclic only</li><li>c) Preemptive</li></ul> | cheduling mechanisie as well as preempti<br>only<br>as well as time slicir | ve            |                                    |
| 6)      | <ul><li>embedded sys</li><li>a) Ability to fit</li><li>b) Low power</li></ul> | stem ?<br>on a single chip                                                 |               | he design metrics of an            |



| 7)  | Which abstraction level<br>sequential program into<br>designing an embedded         | finite-state ma       |             |                                                    | -         | •           |
|-----|-------------------------------------------------------------------------------------|-----------------------|-------------|----------------------------------------------------|-----------|-------------|
|     | a) System b) E                                                                      | Sehaviour c           | ;) F        | RT                                                 | d) Logic  |             |
| 8)  | Which memory storage a) SRAM b) D                                                   | -                     |             | PCs and Embe<br>lash memory                        | -         |             |
| 9)  | Which type of non-privil high priority of an interru                                | •                     | or n        | node is entere                                     | d due to  | raising of  |
|     | <ul><li>a) User mode</li><li>c) Interrupt Mode (IRQ)</li></ul>                      | ,                     | ,           | Fast Interrupt N<br>Supervisor Mod                 | `         | ,           |
| 10) | Which parameter/s is/ar embedded system?                                            | e included in 'T      | Tim         | ne to market' d                                    | esign me  | etric of an |
|     | <ul><li>a) Time to prototype</li><li>c) Time to produce in b</li></ul>              | ,                     | ,           | Time to refine<br>All of the above                 | )         |             |
| 11) | SCI stands for                                                                      |                       |             |                                                    |           |             |
|     | <ul><li>a) Serial Communication</li><li>c) System Connection</li></ul>              | -                     | ,           | Serial Connect<br>None                             | Interface | 9           |
| 12) | In a time-sharing operatis completed, the proce a) Blocked state c) Suspended state | ss goes from th<br>b) | ne r<br>) F |                                                    | o the     | a process   |
| 13) | What kind of memory do a) SRAM b) F                                                 |                       |             | ?<br>EPROM                                         | d) DRA    | M           |
| 14) | Which of the following a a) First Come First Ser c) Earliest Deadline Fir           | ved b)                | ) S         | minimize the p<br>Shortest Job Fi<br>ongest Job Fi | rst       | ow time?    |



| Seat |  |
|------|--|
| No.  |  |

# T.E. (Biomedical) (Part – II) (CGPA) Examination, 2018 EMBEDDED SYSTEM

Day and Date: Wednesday, 23-5-2018 Marks: 56

Time: 2.30 p.m. to 5.30 p.m.

#### SECTION - I

#### 2. Answer any four:

 $(4 \times 3 = 12)$ 

- 1) What are the different processor used in embedded system? Explain with their advantages and disadvantages.
- 2) Draw and explain bus architecture of ARM processor.
- 3) Explain in detail memory allocation program segment and data segment.
- 4) What is pipelining? Explain with an example and how it is advantage in processor?
- 5) Explain different memory devices and selection of memory for an Embedded system.

### 3. Answer any two:

 $(2 \times 8 = 16)$ 

- 1) Draw the Embedded system hardware? Explain each hardware unit of the embedded system in detail.
- 2) Explain the following:
  - i) Watchdog timer
  - ii) USB
  - iii) Interrupt
  - iv) RTC.
- 3) Explain the following in detail :
  - i) I2C communication protocol
  - ii) Application of Embedded System in digital camera.

### 

#### SECTION - II

4. Answer any four:

 $(4 \times 3 = 12)$ 

- 1) Explain different C programing elements.
- 2) Explain inter task communication in RTOS.
- 3) Define task and explain different task states with diagram.
- 4) Draw and explain kernel structure of  $\mu$ COS-II.
- 5) Explain in detail operation of timer and memory management in RTOS.

5. Answer any two:

 $(2 \times 8 = 16)$ 

- 1) Draw and explain in detail interfacing of touch screen input to the embedded system.
- 2) Explain the following:
  - i) Semaphore
  - ii) Priority inversion problems.
- 3) Write short note on:
  - a) Embedded communication using GSM modem.
  - b) Interrupt Service Routine in an RTOS.

\_\_\_\_

|--|--|--|--|

| Seat |  |
|------|--|
| No.  |  |

### B.E. (Biomedical Engg.) (Part – I) (CGPA) Examination, 2018 **NUCLEAR MEDICINE**

Day and Date: Thursday, 3-5-2018 Total Marks: 70

Time: 2.30 p.m. to 5.30 p.m.

Instructions: 1) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book Page No. 3. Each question carries one mark.

> 2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

### MCQ/Objective Type Questions

| ur | atio | n : 30 Minutes                     |                     |      |                 | ľ              | Marks : 14 |
|----|------|------------------------------------|---------------------|------|-----------------|----------------|------------|
| 1. | Cr   | noose the correct ar               | nswer:              |      |                 |                |            |
|    | 1)   | A is u                             | sed to improve the  | e sp | atial resolutio | n of a gamma   | camera.    |
|    |      | a) Grids                           |                     | b)   | Digital camer   | a              |            |
|    |      | c) Scanner                         |                     | d)   | Collimator      |                |            |
|    | 2)   | Attenuation describ                | oes both absorptio  | n ar | nd scattering o | of             |            |
|    |      | a) resolution                      | b) radiation        | c)   | specificity     | d) dose        |            |
|    | 3)   | Absorbed dose is the material.     | ne radiation energy | y ab | sorbed per un   | it mass of     |            |
|    |      | a) absorbing                       | b) radiating        | c)   | scattering      | d) reflecting  |            |
|    | 4)   | Exposure expresse                  | es the              | _ of | an gamma ra     | y beam.        |            |
|    |      | a) dose                            | b) intensity        | c)   | quality         | d) resolution  |            |
|    | 5)   | The isotope of radi                | oactive elements    | are  | usually produ   | ced            |            |
|    |      | a) reactor                         | b) cyclotron        | c)   | radio tracer    | d) PHA         |            |
|    | 6)   | The SPECT techni angles around the | •                   |      | _ to record in  | nages at a ser | ries of    |
|    |      | a) rectilinear scan                | ner                 | b)   | gamma came      | era            |            |
|    |      | c) multiscanner                    |                     | d)   | collimator      |                | P.T.O.     |
|    |      |                                    |                     |      |                 |                |            |

| 7)  | PET is an imaging r                        | nodality for obtair        | ning _ | cro                           | oss sectional images.              |
|-----|--------------------------------------------|----------------------------|--------|-------------------------------|------------------------------------|
|     | a) invitro                                 | b) invivo                  | c) p   | olaner                        | d) linear                          |
| 8)  | SPECT cameras de of single photon.         | tects only                 | th     | at produce a                  | cascaded emission                  |
|     | a) Single image                            |                            | b) 5   | Slice of image                | es                                 |
|     | c) Radio nuclides                          |                            | d) S   | SD image                      |                                    |
| 9)  | The half life of a rac                     | lioactive isotope is       | s giv  | en by t <sup>1/2</sup> =      |                                    |
|     | a) $\frac{\lambda}{0.693}$                 | b) $\frac{0.693}{\lambda}$ | c) -   | $\frac{2\times10^5}{\lambda}$ | d) $\frac{\lambda}{2 \times 10^5}$ |
| 10) | Gamma particles co of light.               | onstitutes                 | ra     | adiation that t               | ravels at the speed                |
|     | a) ultraviolet                             |                            | b) i   | nfrared                       |                                    |
|     | c) electromagnetic                         |                            | d) I   | ight                          |                                    |
| 11) | A scintillator is a light invisible range. |                            | e wh   | nich purchase                 | s minute flashes of                |
|     | a) magnetic                                | b) crystalline             | c) (   | gaseous                       | d) diffused                        |
| 12) | The gamma camera                           | a is a stationary in       | nagir  | ng device for                 | the                                |
|     | a) Organ of interest                       | t                          | b) (   | Collimation                   |                                    |
|     | c) Resolution                              |                            | d) (   | Organ depth                   |                                    |
| 13) | The gamma emission                         | on change in nucl          | eon    | number is                     |                                    |
|     | a) zero                                    |                            | b) c   | definate                      |                                    |
|     | c) increase by 1                           |                            | d) d   | decrease by 1                 |                                    |
| 14) | Radioactive decay i                        | s a pr                     | roces  | SS.                           |                                    |
|     | a) random                                  |                            | b) r   | nonspontaned                  | ous                                |
|     | c) regular                                 |                            | d) r   | massive                       |                                    |
|     |                                            |                            |        |                               |                                    |



| Seat |  |
|------|--|
| No.  |  |

### B.E. (Biomedical Engg.) (Part – I) (CGPA) Examination, 2018 NUCLEAR MEDICINE

Day and Date: Thursday, 3-5-2018

Time: 2.30 p.m. to 5.30 p.m.

SECTION - I

2. Attempt any four questions:

 $(4 \times 4 = 16)$ 

Marks: 56

- 1) Describe photo electric effect and compton effect process.
- 2) The half life of  $^{99m}T_c$  is 6 hours. After how much time will  $\frac{1}{16}^{th}$  of radio isotope remains?
- 3) Derive the relationship between the decay constant and the half life.
- 4) Describe process of gamma ray spectrometry.
- 5) Explain working of scintillation detector with necessary diagram.

3. Attempt any two questions:

 $(6 \times 2 = 12)$ 

- 1) List and explain all types of collimators in detail.
- 2) Explain working of thyroid uptake monitoring system and compare it with kidney uptake monitoring system.
- 3) Draw and explain working of gamma counting system for invivo measurement.

SECTION - II

4. Attempt any 4 questions:

 $(4 \times 4 = 16)$ 

- 1) Explain back projection technique for image reconstruction of PET scan.
- 2) Define and explain internal and external radiation hazards.
- 3) Explain various quality control functions of PET or SPECT.
- 4) Differentiate between PET and SPECT modality.
- 5) Explain working of liquid scintillation system.

5. Attempt any 2 questions:

 $(6 \times 2 = 12)$ 

- 1) Describe various biological effects of radiation exposure.
- 2) Explain working of RIA systems and mention its any 2 applications.
- 3) Describe principle and working of PET system. Also mention various radiotracers used for it.

| Seat |  |
|------|--|
| No.  |  |

Set



# B.E. (Biomedical Engg.) (Part – I) (CGPA) Examination, 2018 NUCLEAR MEDICINE

Day and Date : Thursday, 3-5-2018 Total Marks : 70

Time: 2.30 p.m. to 5.30 p.m.

- Instructions: 1) Q. No. 1 is compulsory. It should be solved in first
  30 minutes in Answer Book Page No. 3. Each question
  carries one mark.
  - 2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

### MCQ/Objective Type Questions

**Duration: 30 Minutes** Marks: 14 1. Choose the correct answer: 1) SPECT cameras detects only \_\_\_\_\_ that produce a cascaded emission of single photon. a) Single image b) Slice of images c) Radio nuclides d) SD image 2) The half life of a radioactive isotope is given by  $t^{1/2} =$ \_\_\_\_\_\_ b)  $\frac{0.693}{\lambda}$  c)  $\frac{2 \times 10^5}{\lambda}$  d)  $\frac{\lambda}{2 \times 10^5}$ 3) Gamma particles constitutes \_\_\_\_\_ radiation that travels at the speed of light. a) ultraviolet b) infrared c) electromagnetic d) light 4) A scintillator is a \_\_\_\_\_ substance which purchases minute flashes of light invisible range. a) magnetic b) crystalline c) gaseous d) diffused 5) The gamma camera is a stationary imaging device for the a) Organ of interest b) Collimation c) Resolution d) Organ depth

| 6)  | The gamma emission                    | on change in nucl   | eon number is      |                        |
|-----|---------------------------------------|---------------------|--------------------|------------------------|
|     | a) zero                               |                     | b) definate        |                        |
|     | c) increase by 1                      |                     | d) decrease by     | <sup>,</sup> 1         |
| 7)  | Radioactive decay i                   | s a pı              | rocess.            |                        |
|     | a) random                             |                     | b) nonspontane     | eous                   |
|     | c) regular                            |                     | d) massive         |                        |
| 8)  | A is us                               | sed to improve the  | e spatial resoluti | on of a gamma camera.  |
|     | a) Grids                              |                     | b) Digital came    | era                    |
|     | c) Scanner                            |                     | d) Collimator      |                        |
| 9)  | Attenuation describe                  | es both absorptio   | n and scattering   | of                     |
|     | a) resolution                         | b) radiation        | c) specificity     | d) dose                |
| 10) | Absorbed dose is th material.         | e radiation energy  | absorbed per u     | nit mass of            |
|     | a) absorbing                          | b) radiating        | c) scattering      | d) reflecting          |
| 11) | Exposure expresse                     | s the               | of an gamma r      | ay beam.               |
|     | a) dose                               | b) intensity        | c) quality         | d) resolution          |
| 12) | The isotope of radio                  | active elements a   | are usually produ  | uced                   |
|     | a) reactor                            | b) cyclotron        | c) radio tracer    | d) PHA                 |
| 13) | The SPECT technic angles around the p |                     | to record i        | images at a series of  |
|     | a) rectilinear scann                  | er                  | b) gamma cam       | nera                   |
|     | c) multiscanner                       |                     | d) collimator      |                        |
| 14) | PET is an imaging r                   | modality for obtair | ning c             | ross sectional images. |
|     | a) invitro                            | b) invivo           | c) planer          | d) linear              |
|     |                                       |                     |                    |                        |



| Seat |  |
|------|--|
| No.  |  |

### B.E. (Biomedical Engg.) (Part – I) (CGPA) Examination, 2018 NUCLEAR MEDICINE

Day and Date: Thursday, 3-5-2018

Time: 2.30 p.m. to 5.30 p.m.

SECTION - I

2. Attempt any four questions:

 $(4 \times 4 = 16)$ 

Marks: 56

- 1) Describe photo electric effect and compton effect process.
- 2) The half life of  $^{99m}T_c$  is 6 hours. After how much time will  $\frac{1}{16}^{th}$  of radio isotope remains?
- 3) Derive the relationship between the decay constant and the half life.
- 4) Describe process of gamma ray spectrometry.
- 5) Explain working of scintillation detector with necessary diagram.

3. Attempt any two questions:

 $(6 \times 2 = 12)$ 

- 1) List and explain all types of collimators in detail.
- 2) Explain working of thyroid uptake monitoring system and compare it with kidney uptake monitoring system.
- 3) Draw and explain working of gamma counting system for invivo measurement.

SECTION - II

4. Attempt any 4 questions:

 $(4 \times 4 = 16)$ 

- 1) Explain back projection technique for image reconstruction of PET scan.
- 2) Define and explain internal and external radiation hazards.
- 3) Explain various quality control functions of PET or SPECT.
- 4) Differentiate between PET and SPECT modality.
- 5) Explain working of liquid scintillation system.



5. Attempt any 2 questions:

 $(6 \times 2 = 12)$ 

- 1) Describe various biological effects of radiation exposure.
- 2) Explain working of RIA systems and mention its any 2 applications.
- 3) Describe principle and working of PET system. Also mention various radiotracers used for it.



| Seat |  |
|------|--|
| No.  |  |

Set

R

# B.E. (Biomedical Engg.) (Part – I) (CGPA) Examination, 2018 NUCLEAR MEDICINE

Day and Date: Thursday, 3-5-2018 Total Marks: 70

Time: 2.30 p.m. to 5.30 p.m.

- Instructions: 1) Q. No. 1 is compulsory. It should be solved in first
  30 minutes in Answer Book Page No. 3. Each question
  carries one mark.
  - 2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

### MCQ/Objective Type Questions

**Duration: 30 Minutes** Marks: 14 1. Choose the correct answer: 1) The isotope of radioactive elements are usually produced b) cyclotron c) radio tracer d) PHA a) reactor 2) The SPECT technique uses a \_\_\_\_\_ to record images at a series of angles around the patient. a) rectilinear scanner b) gamma camera c) multiscanner d) collimator 3) PET is an imaging modality for obtaining \_\_\_\_\_ cross sectional images. a) invitro b) invivo c) planer d) linear 4) SPECT cameras detects only \_\_\_\_\_ that produce a cascaded emission of single photon. a) Single image b) Slice of images c) Radio nuclides d) SD image 5) The half life of a radioactive isotope is given by  $t^{1/2} =$ \_\_\_\_\_\_ b)  $\frac{0.693}{\lambda}$  c)  $\frac{2 \times 10^5}{\lambda}$  d)  $\frac{\lambda}{2 \times 10^5}$ 

| 6)  | Gamma particles con of light.             | nstitutes          |     | radiation that t | rav  | els at the speed  |
|-----|-------------------------------------------|--------------------|-----|------------------|------|-------------------|
|     | a) ultraviolet                            |                    | b)  | infrared         |      |                   |
|     | c) electromagnetic                        |                    | d)  | light            |      |                   |
| 7)  | A scintillator is alight invisible range. | substance          | e w | hich purchase    | s n  | ninute flashes of |
|     | a) magnetic k                             | o) crystalline     | c)  | gaseous          | d)   | diffused          |
| 8)  | The gamma camera                          | is a stationary im | nag | ing device for   | the  |                   |
|     | a) Organ of interest                      |                    | b)  | Collimation      |      |                   |
|     | c) Resolution                             |                    | d)  | Organ depth      |      |                   |
| 9)  | The gamma emission                        | n change in nucle  | eor | number is        |      |                   |
|     | a) zero                                   |                    | b)  | definate         |      |                   |
|     | c) increase by 1                          |                    | d)  | decrease by 1    |      |                   |
| 10) | Radioactive decay is                      | a pr               | OC  | ess.             |      |                   |
|     | a) random                                 |                    | b)  | nonspontaneo     | ous  |                   |
|     | c) regular                                |                    | d)  | massive          |      |                   |
| 11) | A is use                                  | ed to improve the  | sp  | atial resolution | n of | a gamma camera.   |
|     | a) Grids                                  |                    | b)  | Digital camera   | a    |                   |
|     | c) Scanner                                |                    | d)  | Collimator       |      |                   |
| 12) | Attenuation describes                     | s both absorptior  | n a | nd scattering o  | f    |                   |
|     | a) resolution b                           | o) radiation       | c)  | specificity      | d)   | dose              |
| 13) | Absorbed dose is the material.            | radiation energy   | ab  | sorbed per uni   | t ma | ass of            |
|     | a) absorbing b                            | o) radiating       | c)  | scattering       | d)   | reflecting        |
| 14) | Exposure expresses                        | the                | of  | an gamma ray     | y be | eam.              |
|     | a) dose                                   | o) intensity       | c)  | quality          | d)   | resolution        |
|     |                                           |                    |     |                  |      |                   |



| Seat |  |
|------|--|
| No.  |  |

### B.E. (Biomedical Engg.) (Part – I) (CGPA) Examination, 2018 NUCLEAR MEDICINE

Day and Date: Thursday, 3-5-2018

Time: 2.30 p.m. to 5.30 p.m.

SECTION - I

2. Attempt any four questions:

 $(4 \times 4 = 16)$ 

Marks: 56

- 1) Describe photo electric effect and compton effect process.
- 2) The half life of  $^{99m}T_c$  is 6 hours. After how much time will  $\frac{1}{16}^{th}$  of radio isotope remains?
- 3) Derive the relationship between the decay constant and the half life.
- 4) Describe process of gamma ray spectrometry.
- 5) Explain working of scintillation detector with necessary diagram.

3. Attempt any two questions:

 $(6 \times 2 = 12)$ 

- 1) List and explain all types of collimators in detail.
- 2) Explain working of thyroid uptake monitoring system and compare it with kidney uptake monitoring system.
- 3) Draw and explain working of gamma counting system for invivo measurement.

SECTION - II

4. Attempt any 4 questions:

 $(4 \times 4 = 16)$ 

- 1) Explain back projection technique for image reconstruction of PET scan.
- 2) Define and explain internal and external radiation hazards.
- 3) Explain various quality control functions of PET or SPECT.
- 4) Differentiate between PET and SPECT modality.
- 5) Explain working of liquid scintillation system.

5. Attempt any 2 questions:

 $(6 \times 2 = 12)$ 

- 1) Describe various biological effects of radiation exposure.
- 2) Explain working of RIA systems and mention its any 2 applications.
- 3) Describe principle and working of PET system. Also mention various radiotracers used for it.

| <br> | <br> | <br>• |
|------|------|-------|

| Seat |  |
|------|--|
| No.  |  |

Set S

## B.E. (Biomedical Engg.) (Part – I) (CGPA) Examination, 2018 NUCLEAR MEDICINE

Day and Date: Thursday, 3-5-2018 Total Marks: 70

Time: 2.30 p.m. to 5.30 p.m.

c) regular

- Instructions: 1) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book Page No. 3. Each question carries one mark.
  - 2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

#### **MCQ/Objective Type Questions**

**Duration: 30 Minutes** Marks: 14 1. Choose the correct answer: 1) Gamma particles constitutes \_\_\_\_\_ radiation that travels at the speed of light. a) ultraviolet b) infrared d) light c) electromagnetic 2) A scintillator is a \_\_\_\_\_ substance which purchases minute flashes of light invisible range. a) magnetic b) crystalline c) gaseous d) diffused 3) The gamma camera is a stationary imaging device for the a) Organ of interest b) Collimation c) Resolution d) Organ depth 4) The gamma emission change in nucleon number is a) zero b) definate c) increase by 1 d) decrease by 1 5) Radioactive decay is a \_\_\_\_\_ process. a) random b) nonspontaneous

d) massive



| 6)  | A is us                                                                                 | sed to improve the         | e spatial resolut                | tion of a gamma camera.          |
|-----|-----------------------------------------------------------------------------------------|----------------------------|----------------------------------|----------------------------------|
|     | a) Grids                                                                                |                            | b) Digital cam                   | era                              |
|     | c) Scanner                                                                              |                            | d) Collimator                    |                                  |
| 7)  | Attenuation describe                                                                    | es both absorption         | n and scatterin                  | g of                             |
|     | a) resolution                                                                           | b) radiation               | c) specificity                   | d) dose                          |
| 8)  | Absorbed dose is th material.                                                           | e radiation energy         | absorbed per u                   | unit mass of                     |
|     | a) absorbing                                                                            | b) radiating               | c) scattering                    | d) reflecting                    |
| 9)  | Exposure expresse                                                                       | s the                      | of an gamma                      | ray beam.                        |
|     | a) dose                                                                                 | b) intensity               | c) quality                       | d) resolution                    |
| 10) | The isotope of radio                                                                    | active elements a          | are usually prod                 | duced                            |
|     | a) reactor                                                                              | b) cyclotron               | c) radio trace                   | r d) PHA                         |
| 11) | ) The SPECT technique uses a to record images at a series of angles around the patient. |                            |                                  |                                  |
|     | a) rectilinear scann                                                                    | er                         | b) gamma car                     | mera                             |
|     | c) multiscanner                                                                         |                            | d) collimator                    |                                  |
| 12) | PET is an imaging r                                                                     | nodality for obtain        | ning                             | cross sectional images.          |
|     | a) invitro                                                                              | b) invivo                  | c) planer                        | d) linear                        |
| 13) | SPECT cameras de of single photon.                                                      | tects only                 | _ that produce                   | a cascaded emission              |
|     | a) Single image                                                                         |                            | b) Slice of ima                  | ages                             |
|     | c) Radio nuclides                                                                       |                            | d) SD image                      |                                  |
| 14) | The half life of a rac                                                                  | lioactive isotope is       | s given by $t^{1/2}$ =           |                                  |
|     | a) $\frac{\lambda}{0.693}$                                                              | b) $\frac{0.693}{\lambda}$ | c) $\frac{2\times10^5}{\lambda}$ | d) $\frac{\lambda}{2\times10^5}$ |



| Seat |  |
|------|--|
| No.  |  |

### B.E. (Biomedical Engg.) (Part – I) (CGPA) Examination, 2018 NUCLEAR MEDICINE

Day and Date: Thursday, 3-5-2018

Time: 2.30 p.m. to 5.30 p.m.

SECTION - I

2. Attempt any four questions:

 $(4 \times 4 = 16)$ 

Marks: 56

- 1) Describe photo electric effect and compton effect process.
- 2) The half life of  $^{99m}T_c$  is 6 hours. After how much time will  $\frac{1}{16}^{th}$  of radio isotope remains?
- 3) Derive the relationship between the decay constant and the half life.
- 4) Describe process of gamma ray spectrometry.
- 5) Explain working of scintillation detector with necessary diagram.

3. Attempt any two questions:

 $(6 \times 2 = 12)$ 

- 1) List and explain all types of collimators in detail.
- 2) Explain working of thyroid uptake monitoring system and compare it with kidney uptake monitoring system.
- 3) Draw and explain working of gamma counting system for invivo measurement.

SECTION - II

4. Attempt any 4 questions:

 $(4 \times 4 = 16)$ 

- 1) Explain back projection technique for image reconstruction of PET scan.
- 2) Define and explain internal and external radiation hazards.
- 3) Explain various quality control functions of PET or SPECT.
- 4) Differentiate between PET and SPECT modality.
- 5) Explain working of liquid scintillation system.

5. Attempt any 2 questions:

 $(6 \times 2 = 12)$ 

- 1) Describe various biological effects of radiation exposure.
- 2) Explain working of RIA systems and mention its any 2 applications.
- 3) Describe principle and working of PET system. Also mention various radiotracers used for it.



| Seat No. | Set | Р |
|----------|-----|---|
|----------|-----|---|

# B.E. (Biomedical Engg.) (Part – I) (CGPA) Examination, 2018 MEDICAL INFORMATICS

Day and Date : Friday, 4-5-2018 Max. Marks : 70

Time: 2.30 p.m. to 5.30 p.m.

- Instructions: 1) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer book Page No. 3. Each question carries one mark.
  - 2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

|                      | MCQ/Objective           | Type Questic  | ons                    |
|----------------------|-------------------------|---------------|------------------------|
| Duration: 30 Minutes | 3                       |               | Marks: 14              |
| 1. Choose the corre  | ect answer:             |               | (1×14=14)              |
| 1) PHC stands f      | or                      |               |                        |
| a) Programn          | nable Health Centre     | b) Primary    | Hospital Centre        |
| c) Primary H         | lealth Centre           | d) Prograr    | nmable Hospital Centre |
| 2) Among these       | not type of network to  | pology        |                        |
| a) Ring              | b) Bus                  | c) Star       | d) Hash                |
| 3) HMIS fails be     | cause of                | _             |                        |
| a) Incomplet         | e entering of data      |               |                        |
| b) Lack of co        | ommunication            |               |                        |
| c) Difficult u       | o gradation in hardwar  | e and softwa  | re                     |
| d) All of the        | above                   |               |                        |
| 4) Among these       | which is not type of ki | nowledge in e | expert system.         |
| a) Declarativ        | e knowledge             | b) Procedo    | ural knowledge         |
| c) Heuristic         | knowledge               | d) Standa     | rd knowledge           |



| Seat |  |
|------|--|
| No.  |  |

# B.E. (Biomedical Engg.) (Part – I) (CGPA) Examination, 2018 MEDICAL INFORMATICS

Day and Date: Friday, 4-5-2018 Marks: 56

Time: 2.30 p.m. to 5.30 p.m.

#### SECTION - I

2. Attempt any three questions:

 $(3 \times 4 = 12)$ 

- 1) Explain different applications of medical information.
- 2) What is HMIS? Write their benefits in MI.
- 3) Explain in detail the information of operation theater module of HIMS.
- 4) Explain the different human resources are available in surgical simulator.
- 3. Attempt **any two** questions:

 $(2 \times 8 = 16)$ 

- 1) List and explain in detail different prospects of medical informatics.
- 2) Explain why HIMS fails ? Give the different factors affecting maintenance and development of HIMS.
- 3) Write short note on the following:
  - i) Bioinformatics
  - ii) OPD/Consultant clinic module of HIMS.

#### SECTION - II

4. Attempt any three questions:

 $(3 \times 4 = 12)$ 

- 1) What is expert system? Explain different knowledge representation required in ES? Explain any one of them.
- 2) Explain robotic surgery.

- 3) What is AI? Draw and explain each branches of AI.
- 4) Write advantages and disadvantages of tele-surgery.
- 5. Attempt any two questions:

 $(2 \times 8 = 16)$ 

- 1) Write a note on:
  - i) Expectation for CPR
  - ii) Legal, security and privacy issues in CPR.
- 2) Write accuracy cautions of 3-D navigation system. Also explain intraoperative imaging for 3-D navigation system.
- 3) Write and explain different types of data transferred used in telemedicine.



| Seat<br>No. | Set | Q |
|-------------|-----|---|
| 140.        |     |   |

Day and Date: Friday, 4-5-2018 Max. Marks: 70

Time: 2.30 p.m. to 5.30 p.m.

- Instructions: 1) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer book Page No. 3. Each question carries one mark.
  - 2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

# MCQ/Objective Type Questions

| Duration: 30 Minutes                    | Marks: 14                                       |
|-----------------------------------------|-------------------------------------------------|
| 1. Choose the correct answer:           | (1×14=14)                                       |
| 1) Public grievances and feedback f     | unction is considered in                        |
| <ul> <li>a) Inventory module</li> </ul> | b) Communication module                         |
| c) General information module           | d) Administration module                        |
| 2) Render means                         |                                                 |
| a) Convert a numerical represen         | ntation of an object into visual representation |
| b) Convert visual representation        | of an object into numerical representation      |
| c) Both a) and b)                       |                                                 |
| d) None                                 |                                                 |
| 3) The best tele-medicine tool availa   | able on                                         |
| a) TV                                   | b) Telephone                                    |
| c) Mobile                               | d) Internet                                     |
| 4) Auto-analyzers can carry out         |                                                 |
| a) 20 or more, 150                      | b) 20 or less, 150                              |
| c) 2, 150                               | d) 2.15                                         |

| 5)  | Tel                                        | e-medicine incl                     | udes                 |                               |                   |                     |
|-----|--------------------------------------------|-------------------------------------|----------------------|-------------------------------|-------------------|---------------------|
|     | a)                                         | Video conferen                      | ncing                | b) Digital image transmission |                   |                     |
|     | c) Both a) and b)                          |                                     |                      | d)                            | None              |                     |
| 6)  | CS                                         | T stands for                        |                      |                               |                   |                     |
|     | a)                                         | Cost-Saver Tee                      | chnology             | b)                            | Client Server T   | echnology           |
|     | c)                                         | Computer Serv                       | er Technology        | d)                            | None              |                     |
| 7)  |                                            | nultaneous view<br>he benefits of _ | ing of images by ma  | any                           | consultants and   | distant institution |
|     | a)                                         | ASP                                 | b) PACS              | c)                            | POE               | d) Al               |
| 8)  | PH                                         | C stands for                        |                      |                               |                   |                     |
|     | a)                                         | Programmable                        | Health Centre        | b)                            | Primary Hospita   | al Centre           |
|     | c)                                         | Primary Health                      | Centre               | d)                            | Programmable      | Hospital Centre     |
| 9)  | ) Among these not type of network topology |                                     |                      |                               |                   |                     |
|     | a)                                         | Ring                                | b) Bus               | c)                            | Star              | d) Hash             |
| 10) | HMIS fails because of                      |                                     |                      |                               |                   |                     |
|     | a)                                         | Incomplete ent                      | ering of data        |                               |                   |                     |
|     | b)                                         | Lack of commu                       | ınication            |                               |                   |                     |
|     | c)                                         | Difficult up grad                   | dation in hardware   | and                           | d software        |                     |
|     | d)                                         | All of the above                    | Э                    |                               |                   |                     |
| 11) | Am                                         | ong these whic                      | h is not type of kno | wle                           | edge in expert sy | vstem.              |
|     | a)                                         | Declarative know                    | owledge              | b)                            | Procedural kno    | wledge              |
|     | c)                                         | Heuristic know                      | ledge                | d)                            | Standard know     | ledge               |
| 12) |                                            | is the                              | heart of WEB brow    | wse                           | r.                |                     |
|     | a)                                         | HTTP                                | b) WWW               | c)                            | HTML              | d) CGI              |
| 13) | Wh                                         | nich is not relate                  | d to blood bank mo   | odu                           | le.               |                     |
|     | a)                                         | Inventory                           |                      | ,                             | Donors            |                     |
|     | ,                                          | Storage                             |                      | ,                             | Performance       |                     |
| 14) |                                            | •                                   | olved in the develo  | -                             |                   |                     |
|     | a)                                         | Feasibility                         |                      | b)                            | Design            |                     |
|     | c)                                         | Coding                              |                      | d)                            | Conversion        |                     |



| Seat |  |
|------|--|
| No.  |  |

Day and Date: Friday, 4-5-2018 Marks: 56

Time: 2.30 p.m. to 5.30 p.m.

#### SECTION - I

#### 2. Attempt any three questions:

 $(3\times 4=12)$ 

- 1) Explain different applications of medical information.
- 2) What is HMIS? Write their benefits in MI.
- 3) Explain in detail the information of operation theater module of HIMS.
- 4) Explain the different human resources are available in surgical simulator.

### 3. Attempt any two questions:

 $(2 \times 8 = 16)$ 

- 1) List and explain in detail different prospects of medical informatics.
- 2) Explain why HIMS fails ? Give the different factors affecting maintenance and development of HIMS.
- 3) Write short note on the following:
  - i) Bioinformatics
  - ii) OPD/Consultant clinic module of HIMS.

#### SECTION - II

## 4. Attempt any three questions:

 $(3 \times 4 = 12)$ 

- 1) What is expert system? Explain different knowledge representation required in ES? Explain any one of them.
- 2) Explain robotic surgery.



- 3) What is AI? Draw and explain each branches of AI.
- 4) Write advantages and disadvantages of tele-surgery.
- 5. Attempt any two questions:

 $(2 \times 8 = 16)$ 

- 1) Write a note on:
  - i) Expectation for CPR
  - ii) Legal, security and privacy issues in CPR.
- 2) Write accuracy cautions of 3-D navigation system. Also explain intraoperative imaging for 3-D navigation system.
- 3) Write and explain different types of data transferred used in telemedicine.



| Seat | Set | R |
|------|-----|---|
| No.  | Sei | n |

Day and Date : Friday, 4-5-2018 Max. Marks : 70

Time: 2.30 p.m. to 5.30 p.m.

Instructions: 1) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer book Page No. 3. Each question carries one mark.

2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

|                       | MCQ/Objective       | Type Questions       |                 |              |
|-----------------------|---------------------|----------------------|-----------------|--------------|
| Duration: 30 Minutes  |                     |                      |                 | Marks: 14    |
| 1. Choose the correct | answer:             |                      |                 | (1×14=14)    |
| 1) is t               | he heart of WEB b   | rowser.              |                 |              |
|                       | b) WWW              |                      | d) CGI          |              |
| 2) Which is not rela  | ated to blood bank  | module.              |                 |              |
| a) Inventory          |                     | b) Donors            |                 |              |
| c) Storage            |                     | d) Performand        | ce              |              |
| 3) This step is not   | involved in the dev | elopment of HMIS     | <b>.</b>        |              |
| a) Feasibility        |                     | b) Design            |                 |              |
| c) Coding             |                     | d) Conversion        | 1               |              |
| 4) Public grievance   | es and feedback fu  | nction is considere  | ed in           |              |
| a) Inventory mo       | odule               | b) Communic          | ation module    |              |
| c) General info       | rmation module      | d) Administrat       | tion module     |              |
| 5) Render means _     |                     |                      |                 |              |
| a) Convert a nu       | umerical represent  | ation of an object i | into visual rep | oresentation |
| b) Convert visu       | al representation o | of an object into nu | umerical repre  | esentation   |
| c) Both a) and        | b)                  |                      |                 |              |
| d) None               |                     |                      |                 |              |

| 6)   | The best tele-medicine tool available on                                                                              |                   |                      |                                 |                     |            |
|------|-----------------------------------------------------------------------------------------------------------------------|-------------------|----------------------|---------------------------------|---------------------|------------|
|      | a) TV                                                                                                                 |                   |                      | b)                              | Telephone           |            |
|      | c) Mobile                                                                                                             |                   |                      | d)                              | Internet            |            |
| 7)   | Au                                                                                                                    | to-analyzers car  | n carry out          |                                 |                     |            |
|      | a)                                                                                                                    | 20 or more, 150   | 0                    | b)                              | 20 or less, 150     |            |
|      | c)                                                                                                                    | 2, 150            |                      | d)                              | 2,15                |            |
| 8)   | Tel                                                                                                                   | le-medicine inclu | udes                 |                                 |                     |            |
|      | ,                                                                                                                     | Video conferen    | cing                 | •                               | Digital image tr    | ansmission |
|      | -                                                                                                                     | Both a) and b)    |                      | d)                              | None                |            |
| 9)   |                                                                                                                       | ST stands for     |                      |                                 |                     |            |
|      |                                                                                                                       | Cost-Saver Ted    |                      | ,                               | Client Server T     | echnology  |
| 4.0\ |                                                                                                                       |                   | er Technology        |                                 |                     |            |
| 10)  | <ul> <li>Simultaneous viewing of images by many consultants and distant institution<br/>in the benefits of</li> </ul> |                   |                      |                                 | distant institution |            |
|      | a)                                                                                                                    | ASP               | b) PACS              | c)                              | POE                 | d) Al      |
| 11)  | PH                                                                                                                    | IC stands for     |                      |                                 |                     |            |
|      | a)                                                                                                                    | Programmable      | Health Centre        | b)                              | Primary Hospita     | al Centre  |
|      | c)                                                                                                                    | Primary Health    | Centre               | d) Programmable Hospital Centre |                     |            |
| 12)  | Am                                                                                                                    | nong these not ty | ype of network topo  | olog                            | ЭУ                  |            |
|      | a)                                                                                                                    | Ring              | b) Bus               | c)                              | Star                | d) Hash    |
| 13)  | ΗM                                                                                                                    | IIS fails because | e of                 |                                 |                     |            |
|      | a)                                                                                                                    | Incomplete ente   | ering of data        |                                 |                     |            |
|      | b)                                                                                                                    | Lack of commu     | nication             |                                 |                     |            |
|      | c)                                                                                                                    | Difficult up grad | dation in hardware   | anc                             | d software          |            |
|      | -                                                                                                                     | All of the above  |                      |                                 |                     |            |
| 14)  |                                                                                                                       |                   | h is not type of kno | wle                             | edae in expert sv   | vstem.     |
| ,    |                                                                                                                       | Declarative kno   |                      |                                 | Procedural kno      |            |
|      |                                                                                                                       |                   | _                    | ,                               |                     | · ·        |
|      | C)                                                                                                                    | Heuristic knowl   | euge                 | u)                              | Standard know       | ieuge      |



| Seat |  |
|------|--|
| No.  |  |

Day and Date: Friday, 4-5-2018 Marks: 56

Time: 2.30 p.m. to 5.30 p.m.

#### SECTION - I

#### 2. Attempt any three questions:

 $(3 \times 4 = 12)$ 

- 1) Explain different applications of medical information.
- 2) What is HMIS? Write their benefits in MI.
- 3) Explain in detail the information of operation theater module of HIMS.
- 4) Explain the different human resources are available in surgical simulator.

### 3. Attempt any two questions:

 $(2 \times 8 = 16)$ 

- 1) List and explain in detail different prospects of medical informatics.
- 2) Explain why HIMS fails ? Give the different factors affecting maintenance and development of HIMS.
- 3) Write short note on the following:
  - i) Bioinformatics
  - ii) OPD/Consultant clinic module of HIMS.

#### SECTION - II

## 4. Attempt any three questions:

 $(3 \times 4 = 12)$ 

- 1) What is expert system? Explain different knowledge representation required in ES? Explain any one of them.
- 2) Explain robotic surgery.

- 3) What is AI? Draw and explain each branches of AI.
- 4) Write advantages and disadvantages of tele-surgery.
- 5. Attempt any two questions:

 $(2 \times 8 = 16)$ 

- 1) Write a note on:
  - i) Expectation for CPR
  - ii) Legal, security and privacy issues in CPR.
- 2) Write accuracy cautions of 3-D navigation system. Also explain intraoperative imaging for 3-D navigation system.
- 3) Write and explain different types of data transferred used in telemedicine.



| I    |  |
|------|--|
| Seat |  |
| 1    |  |
| No.  |  |
| 140. |  |

Set

S

# B.E. (Biomedical Engg.) (Part – I) (CGPA) Examination, 2018 MEDICAL INFORMATICS

Day and Date: Friday, 4-5-2018 Max. Marks: 70

Time: 2.30 p.m. to 5.30 p.m.

- Instructions: 1) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer book Page No. 3. Each question carries one mark.
  - 2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

# MCQ/Objective Type Questions

| Duration: 30 Minute | es                      |                  |                  | Marks: 14 |
|---------------------|-------------------------|------------------|------------------|-----------|
| Choose the corr     | rect answer:            |                  |                  | (1×14=14) |
| 1) The best tel     | e-medicine tool availab | le on            | _                |           |
| a) TV               |                         | b) Telephone     | <b>;</b>         |           |
| c) Mobile           |                         | d) Internet      |                  |           |
| 2) Auto-analyz      | ers can carry out       |                  |                  |           |
| a) 20 or mo         | ore, 150                | b) 20 or less,   | 150              |           |
| c) 2, 150           |                         | d) 2,15          |                  |           |
| 3) Tele-medicii     | ne includes             | _                |                  |           |
| a) Video co         | onferencing             | b) Digital ima   | ge transmissio   | on        |
| c) Both a) a        | and b)                  | d) None          |                  |           |
| 4) CST stands       | for                     |                  |                  |           |
| a) Cost-Sa          | ver Technology          | b) Client Sen    | ver Technolog    | y         |
| c) Compute          | er Server Technology    | d) None          |                  |           |
| ,                   | is viewing of images by | many consultants | s and distant in | stitution |
| a) ASP              | b) PACS                 | c) POE           | d) Al            |           |

| 6)  | PHC stands for |                   |                      |      |                   |                       |
|-----|----------------|-------------------|----------------------|------|-------------------|-----------------------|
|     | a)             | Programmable      | Health Centre        | b)   | Primary Hospita   | al Centre             |
|     | c)             | Primary Health    | Centre               | d)   | Programmable      | Hospital Centre       |
| 7)  | Am             | ong these not t   | ype of network topo  | olog | JY                |                       |
|     | a)             | Ring              | b) Bus               | c)   | Star              | d) Hash               |
| 8)  | ΗN             | IIS fails becaus  | e of                 |      |                   |                       |
|     | a)             | Incomplete ent    | ering of data        |      |                   |                       |
|     | b)             | Lack of commu     | unication            |      |                   |                       |
|     | c)             | Difficult up grad | dation in hardware   | and  | d software        |                       |
|     | d)             | All of the above  | Э                    |      |                   |                       |
| 9)  | Am             | nong these whic   | h is not type of kno | wle  | edge in expert sy | /stem.                |
|     | a)             | Declarative know  | owledge              | b)   | Procedural kno    | wledge                |
|     | c)             | Heuristic know    | ledge                | d)   | Standard know     | ledge                 |
| 10) |                | is the            | heart of WEB brov    |      |                   |                       |
|     | ,              | HTTP              | ,                    |      |                   | d) CGI                |
| 11) |                |                   | ed to blood bank mo  |      |                   |                       |
|     | •              | Inventory         |                      | ,    | Donors            |                       |
| 10) | •              | Storage           | volved in the develo | ,    | Performance       |                       |
| 12) |                | Feasibility       | olved in the develo  | -    | Design            |                       |
|     | •              | Coding            |                      | ,    | Conversion        |                       |
| 13) | •              | •                 | and feedback funct   | •    |                   | 1                     |
|     | a)             | Inventory mode    | ule                  | b)   | Communication     | n module              |
|     | c)             | General inform    | ation module         | d)   | Administration    | module                |
| 14) | Re             | nder means        |                      |      |                   |                       |
|     | •              |                   | •                    |      | -                 | visual representation |
|     | -              |                   | representation of a  | n o  | bject into nume   | rical representation  |
|     |                | Both a) and b)    |                      |      |                   |                       |
|     | d)             | None              |                      |      |                   |                       |



| Seat |  |
|------|--|
| No.  |  |

Day and Date: Friday, 4-5-2018 Marks: 56

Time: 2.30 p.m. to 5.30 p.m.

#### SECTION - I

#### 2. Attempt any three questions:

 $(3 \times 4 = 12)$ 

- 1) Explain different applications of medical information.
- 2) What is HMIS? Write their benefits in MI.
- 3) Explain in detail the information of operation theater module of HIMS.
- 4) Explain the different human resources are available in surgical simulator.

## 3. Attempt **any two** questions:

 $(2 \times 8 = 16)$ 

- 1) List and explain in detail different prospects of medical informatics.
- 2) Explain why HIMS fails ? Give the different factors affecting maintenance and development of HIMS.
- 3) Write short note on the following:
  - i) Bioinformatics
  - ii) OPD/Consultant clinic module of HIMS.

#### SECTION - II

## 4. Attempt any three questions:

 $(3 \times 4 = 12)$ 

- 1) What is expert system? Explain different knowledge representation required in ES? Explain any one of them.
- 2) Explain robotic surgery.

- 3) What is AI? Draw and explain each branches of AI.
- 4) Write advantages and disadvantages of tele-surgery.
- 5. Attempt any two questions:

 $(2 \times 8 = 16)$ 

- 1) Write a note on:
  - i) Expectation for CPR
  - ii) Legal, security and privacy issues in CPR.
- 2) Write accuracy cautions of 3-D navigation system. Also explain intraoperative imaging for 3-D navigation system.
- 3) Write and explain different types of data transferred used in telemedicine.

a) EMF

|             |                                                     |                                                                        |                                                                                                         | SLR-10 - 462                        |
|-------------|-----------------------------------------------------|------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-------------------------------------|
| Seat<br>No. |                                                     |                                                                        |                                                                                                         | Set P                               |
|             | •                                                   |                                                                        | rt – I) (CGPA) Examir<br>TRUMENTATION – II                                                              |                                     |
| -           | nd Date : Saturday<br>2.30 p.m. to 5.30             |                                                                        |                                                                                                         | Max. Marks : 70                     |
|             | 2)                                                  | <b>minutes</b> in And<br>carries <b>one</b> man<br><b>Answer MCQ</b> / | npulsory. It should be<br>swer Book Page No. 3<br>k.<br>Objective type questi<br>get to mention, Q.P. S | 3. Each question ions on Page No. 3 |
|             |                                                     | MCQ/Objectiv                                                           | e Type Questions                                                                                        |                                     |
| Duration    | on: 30 Minutes                                      | •                                                                      | ,                                                                                                       | Marks: 14                           |
| 1. Ch       | noose the correct a                                 | ınswer:                                                                |                                                                                                         | 14                                  |
| 1)          | In aa<br>a) Pace maker<br>c) Ultrasonic dia         |                                                                        | -,                                                                                                      |                                     |
| 2)          | contr                                               | action of the he                                                       | ous cardiac emergend<br>art muscle.<br>nous c) S.A. node                                                |                                     |
| 3)          | -                                                   | emoves                                                                 | other than harmful v                                                                                    | vastes.                             |
| 4)          | Faradic current i current intensity.  a) Period     | s a sequences<br>b) Pulses                                             | ofwith a de                                                                                             | efined shape and                    |
| 5)          | ,                                                   | ich the necessa                                                        | ry synchronism is lost is k c) Heart attack                                                             | known as                            |
| 6)          | Surgical diathern a) low frequency c) high frequenc | ny machine cons                                                        | sists of a po<br>b) high voltage<br>d) medium frequen                                                   | wer oscillator.                     |

7) Ultrasonic generators are constructed on \_\_\_\_\_ effect.

b) Faraday

c) Piezoelectric d) Magnetic

| 8)  | The coil type dialyzer consists of a tub wound into a coil.                | e made up of the material                                                   |
|-----|----------------------------------------------------------------------------|-----------------------------------------------------------------------------|
|     | a) Transparent                                                             | b) Biocompatiable                                                           |
|     | c) Semipermeable membrane                                                  | d) Hollow fiber                                                             |
| 9)  | Heart block occurs whenever the co impulses from the atria to              | the ventricles property.                                                    |
|     | a) Signal b) Pulse                                                         |                                                                             |
| 10) |                                                                            |                                                                             |
|     | <ul><li>a) Uremia</li><li>c) Kidney failure</li></ul>                      | b) Chronic renal failure                                                    |
|     | c) Kidney failure                                                          | d) None of the above                                                        |
| 11) | is the exchange of things of                                               | lissolved in fluid across the membrane                                      |
| •   | due to difference in amount of solute                                      | S.                                                                          |
|     | a) Drift b) Osmosis                                                        | c) Ultrafilteration d) Diffusion                                            |
| 12) | In coagulation electric arc                                                | s intentionally generated between                                           |
|     | the electrode and tissue.                                                  |                                                                             |
|     | a) Spray b) Soft                                                           | c) Forced d) Spark                                                          |
| 13) | An external pacemaker may apply 50 cm <sup>2</sup> electrode on the chest. | upto pulses through                                                         |
|     | a) 80 mA b) 8 A                                                            | c) 40 mA d) 100 mA                                                          |
| 14) | The hazards associated withcurrent density at a rate other than at         | units is burns caused by excess which it is to be present. b) Defibrillator |
|     |                                                                            |                                                                             |



| Seat |  |
|------|--|
| No.  |  |

# B.E. (Biomedical Engg.) (Part – I) (CGPA) Examination, 2018 BIOMEDICAL INSTRUMENTATION – III

Day and Date: Saturday, 5-5-2018 Marks: 56

Time: 2.30 p.m. to 5.30 p.m.

#### SECTION - I

### 2. Attempt any four questions :

 $(4 \times 4 = 16)$ 

- 1) With the help of neat diagram explain various application techniques of short wave therapy.
- 2) Explain various power sources used for pacemakers.
- 3) Explain circus motion theory of fibrillation for pacemaker.
- 4) Explain working of surgical diathermy analyzer with necessary diagram.
- 5) Explain construction and working of infrared and ultraviolet lamps.

### 3. Attempt any 2 questions:

 $(6 \times 2 = 12)$ 

- 1) Differentiate between internal and external pacemaker. Also explain construction of electrodes used for each of pacemaker.
- 2) Draw and explain working of cut and LOAG circuits of ESU.
- 3) With the help of circuit diagram explain working of ultrasonic therapy unit.

#### SECTION - II

### 4. Attempt any four questions :

 $(4 \times 4 = 16)$ 

- 1) Define and differentiate between atrial and ventricular fibrillation occurrence and how to overcome it.
- 2) Explain working of portable type dialysis machine in detail.
- 3) List various medical laser types and their medical applications.
- 4) Draw and explain working of defibrillator analyzers.
- 5) Describe the principle of dialysis machine.

# 5. Attempt any 2 questions:

 $(6 \times 2 = 12)$ 

- 1) Describe process of working of artificial kidney machine.
- 2) Explain with the help of neat circuit diagram of INST mode of defibrillator.
- 3) Draw circuit diagram of heart rate variability meter and explain its working also mention its applications.

|--|--|

c) Kidney failure

the electrode and tissue.

50 cm<sup>2</sup> electrode on the chest.

a) 80 mA b) 8 A

a) Drift

a) Spray

due to difference in amount of solutes.

b) Osmosis

b) Soft

**SLR-TC - 462** 

| Seat<br>No. |                                                                                                                                    | Set Q                                                                                                                                                      |
|-------------|------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             |                                                                                                                                    | : – I) (CGPA) Examination, 2018 RUMENTATION – III                                                                                                          |
| -           | nd Date : Saturday, 5-5-2018<br>2.30 p.m. to 5.30 p.m.                                                                             | Max. Marks: 70                                                                                                                                             |
|             | minutes in Ansi<br>carries one mark<br>2) Answer MCQ/O                                                                             | pulsory. It should be solved in first 30 wer Book Page No. 3. Each question bjective type questions on Page No. 3 et to mention, Q.P. Set (P/Q/R/S) on Top |
| <b>.</b>    |                                                                                                                                    | Type Questions                                                                                                                                             |
| Duratio     | on : 30 Minutes                                                                                                                    | Marks: 14                                                                                                                                                  |
| 1. Cł       | noose the correct answer:                                                                                                          | 14                                                                                                                                                         |
| 1)          | <ul><li>The coil type dialyzer consists of a wound into a coil.</li><li>a) Transparent</li><li>c) Semipermeable membrane</li></ul> | b) Biocompatiable                                                                                                                                          |
| 2)          |                                                                                                                                    | conduction system fails to transmit the a to the ventricles property.  c) Fibrillation d) Pacing                                                           |
| 3)          | ) is the clinical state res                                                                                                        | ulting from renal failure.<br>b) Chronic renal failure                                                                                                     |

4) \_\_\_\_\_ is the exchange of things dissolved in fluid across the membrane

5) In \_\_\_\_\_ coagulation electric arcs intentionally generated between

6) An external pacemaker may apply upto \_\_\_\_\_ pulses through

d) None of the above

c) Forced

c) Ultrafilteration d) Diffusion

d) Spark

| a) Electrosurgery                                       | rate other than a                                                                                                                                                                                                                                               | t wh                                                                                                                                                                                                                                                                                                                                                                                                         | nich it is to be p<br>Defibrillator                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|---------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| a) Pace maker                                           |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                              | b) Shortwave diathermy                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| contrac                                                 | ction of the heart n                                                                                                                                                                                                                                            | nus                                                                                                                                                                                                                                                                                                                                                                                                          | cle.                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                         |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                         |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| a) Protein                                              | b) Salt                                                                                                                                                                                                                                                         | c)                                                                                                                                                                                                                                                                                                                                                                                                           | Insulin                                                                                                                                                                                                                                                                                                                                                                                                                                                                | d)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Glycogen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| current intensity.                                      |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| a) Period                                               | b) Pulses                                                                                                                                                                                                                                                       | c)                                                                                                                                                                                                                                                                                                                                                                                                           | Cycles                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | d)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Waves                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                         | _                                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Surgical diathermy  a) low frequency  c) high frequency |                                                                                                                                                                                                                                                                 | b)                                                                                                                                                                                                                                                                                                                                                                                                           | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| , , ,                                                   |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Jitrasonic generato                                     | ors are constructe                                                                                                                                                                                                                                              | d or                                                                                                                                                                                                                                                                                                                                                                                                         | n ef                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | fec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | t.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ,                                                       |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Ultrasonic generate                                     |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                         | a) Electrosurgery b) Heart rate mete n a ap a) Pace maker b) Ultrasonic diath Ventricular fibrilla contract a) Synchronous Haemodialysis rem a) Protein Faradic current is current intensity. a) Period A condition in whice a) Fibrillation Surgical diathermy | a) Electrosurgery b) Heart rate meter n a approximately 4000 a) Pace maker b) Ultrasonic diathermy Ventricular fibrillation is a serious contraction of the heart r a) Synchronous Haemodialysis removes a) Protein b) Salt Faradic current is a sequences of current intensity. a) Period b) Pulses A condition in which the necessary s a) Fibrillation b) Heart block Surgical diathermy machine consists | b) Electrosurgery b) Heart rate meter d) n a approximately 4000 v is a) Pace maker b) C) Ultrasonic diathermy d) Ventricular fibrillation is a serious ca contraction of the heart mus a) Synchronous b) Asynchronous c) Haemodialysis removes others) Protein b) Salt c) Faradic current is a sequences of current intensity. a) Period b) Pulses c) A condition in which the necessary syncial Fibrillation b) Heart block c) Surgical diathermy machine consists of | b) Defibrillator c) Heart rate meter d) Pacemaker n a approximately 4000 v is initially applied a) Pace maker b) Shortwave diat c) Ultrasonic diathermy d) Defibrillator Ventricular fibrillation is a serious cardiac emergen contraction of the heart muscle. a) Synchronous b) Asynchronous c) S.A. node Haemodialysis removes other than harmful a) Protein b) Salt c) Insulin Faradic current is a sequences of with a courrent intensity. a) Period b) Pulses c) Cycles A condition in which the necessary synchronism is lost a) Fibrillation b) Heart block c) Heart attack Surgical diathermy machine consists of a per | c) Heart rate meter d) Pacemaker  n a approximately 4000 v is initially applied to a) Pace maker b) Shortwave diather b) Ultrasonic diathermy d) Defibrillator  Ventricular fibrillation is a serious cardiac emergency contraction of the heart muscle. a) Synchronous b) Asynchronous c) S.A. node d) Haemodialysis removes other than harmful wate. a) Protein b) Salt c) Insulin d) Faradic current is a sequences of with a definite current intensity. a) Period b) Pulses c) Cycles d) A condition in which the necessary synchronism is lost is kea) Fibrillation b) Heart block c) Heart attack d) Surgical diathermy machine consists of a power |



| Seat |  |
|------|--|
| No.  |  |

# B.E. (Biomedical Engg.) (Part – I) (CGPA) Examination, 2018 BIOMEDICAL INSTRUMENTATION – III

Day and Date: Saturday, 5-5-2018 Marks: 56

Time: 2.30 p.m. to 5.30 p.m.

#### SECTION - I

### 2. Attempt any four questions :

 $(4 \times 4 = 16)$ 

- 1) With the help of neat diagram explain various application techniques of short wave therapy.
- 2) Explain various power sources used for pacemakers.
- 3) Explain circus motion theory of fibrillation for pacemaker.
- 4) Explain working of surgical diathermy analyzer with necessary diagram.
- 5) Explain construction and working of infrared and ultraviolet lamps.

### 3. Attempt any 2 questions:

 $(6 \times 2 = 12)$ 

- 1) Differentiate between internal and external pacemaker. Also explain construction of electrodes used for each of pacemaker.
- 2) Draw and explain working of cut and LOAG circuits of ESU.
- 3) With the help of circuit diagram explain working of ultrasonic therapy unit.

#### SECTION - II

## 4. Attempt **any four** questions :

 $(4 \times 4 = 16)$ 

- 1) Define and differentiate between atrial and ventricular fibrillation occurrence and how to overcome it.
- 2) Explain working of portable type dialysis machine in detail.
- 3) List various medical laser types and their medical applications.
- 4) Draw and explain working of defibrillator analyzers.
- 5) Describe the principle of dialysis machine.

# 5. Attempt any 2 questions:

 $(6 \times 2 = 12)$ 

- 1) Describe process of working of artificial kidney machine.
- 2) Explain with the help of neat circuit diagram of INST mode of defibrillator.
- 3) Draw circuit diagram of heart rate variability meter and explain its working also mention its applications.

|             |                                                                       |                                                                             |                                                                | <b>SLR-TC – 462</b>                                                                              |
|-------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| Seat<br>No. |                                                                       |                                                                             |                                                                | Set R                                                                                            |
|             | •                                                                     |                                                                             | – I) (CGPA) Exar<br>RUMENTATION -                              |                                                                                                  |
| •           | d Date : Saturday,<br>2.30 p.m. to 5.30 p                             |                                                                             |                                                                | Max. Marks: 70                                                                                   |
| ,           | 2) A                                                                  | <b>ninutes</b> in Answ<br>carries <b>one</b> mark.<br><b>Answer MCQ/O</b> b | ver Book Page No<br>pjective type que                          | ne solved in first 30<br>o. 3. Each question<br>estions on Page No. 3<br>o. Set (P/Q/R/S) on Top |
| Duratio     | on : 30 Minutes                                                       | MCQ/Objective                                                               | Type Questions                                                 | Marks : 14                                                                                       |
|             |                                                                       |                                                                             |                                                                |                                                                                                  |
|             | oose the correct a                                                    |                                                                             | synchronism is los                                             | t is known as                                                                                    |
| '/          | a) Fibrillation                                                       | •                                                                           | c) Heart attack                                                |                                                                                                  |
| 2)          | Surgical diatherm a) low frequency c) high frequency                  |                                                                             | ts of a<br>b) high voltage<br>d) medium frequ                  |                                                                                                  |
| 3)          | Ultrasonic genera<br>a) EMF                                           |                                                                             | ted on<br>c) Piezoelectric                                     |                                                                                                  |
| 4)          | The coil type dialy wound into a coil. a) Transparent c) Semipermeabl |                                                                             | ube made up of the<br>b) Biocompatiab<br>d) Hollow fiber       | material                                                                                         |
| 5)          | Heart block occur                                                     | s whenever the o                                                            | ,                                                              | fails to transmit the roperty. d) Pacing                                                         |
| 6)          |                                                                       | •                                                                           | ulting from renal fail<br>b) Chronic renal<br>d) None of the a | lure.<br>failure                                                                                 |

7) \_\_\_\_\_\_ is the exchange of things dissolved in fluid across the membrane

b) Osmosis c) Ultrafilteration d) Diffusion

due to difference in amount of solutes.

a) Drift

a) Period b) Pulses c) Cycles d) Waves



| Seat |  |
|------|--|
| No.  |  |

# B.E. (Biomedical Engg.) (Part – I) (CGPA) Examination, 2018 BIOMEDICAL INSTRUMENTATION – III

Day and Date: Saturday, 5-5-2018 Marks: 56

Time: 2.30 p.m. to 5.30 p.m.

#### SECTION - I

### 2. Attempt any four questions :

 $(4 \times 4 = 16)$ 

- 1) With the help of neat diagram explain various application techniques of short wave therapy.
- 2) Explain various power sources used for pacemakers.
- 3) Explain circus motion theory of fibrillation for pacemaker.
- 4) Explain working of surgical diathermy analyzer with necessary diagram.
- 5) Explain construction and working of infrared and ultraviolet lamps.

### 3. Attempt any 2 questions:

 $(6 \times 2 = 12)$ 

- 1) Differentiate between internal and external pacemaker. Also explain construction of electrodes used for each of pacemaker.
- 2) Draw and explain working of cut and LOAG circuits of ESU.
- 3) With the help of circuit diagram explain working of ultrasonic therapy unit.

#### SECTION - II

### 4. Attempt **any four** questions :

 $(4 \times 4 = 16)$ 

- 1) Define and differentiate between atrial and ventricular fibrillation occurrence and how to overcome it.
- 2) Explain working of portable type dialysis machine in detail.
- 3) List various medical laser types and their medical applications.
- 4) Draw and explain working of defibrillator analyzers.
- 5) Describe the principle of dialysis machine.

## 5. Attempt any 2 questions:

 $(6 \times 2 = 12)$ 

- 1) Describe process of working of artificial kidney machine.
- 2) Explain with the help of neat circuit diagram of INST mode of defibrillator.
- 3) Draw circuit diagram of heart rate variability meter and explain its working also mention its applications.

**SLR-TC - 462** 

| Seat | Set |   |
|------|-----|---|
| No.  | Set | 5 |

# B.E. (Biomedical Engg.) (Part – I) (CGPA) Examination, 2018 BIOMEDICAL INSTRUMENTATION – III

Day and Date: Saturday, 5-5-2018 Max. Marks: 70

Time: 2.30 p.m. to 5.30 p.m.

Instructions: 1) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book Page No. 3. Each question carries one mark.

2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

# **MCQ/Objective Type Questions**

|         |                                             | WOW/ODJCCHVC                                                 | Type Gues                           | 110113                               |              |            |
|---------|---------------------------------------------|--------------------------------------------------------------|-------------------------------------|--------------------------------------|--------------|------------|
| Duratio | on: 30 Minutes                              | }                                                            |                                     |                                      | M            | larks : 14 |
| 1. Ch   | oose the corre                              | ect answer :                                                 |                                     |                                      |              | 14         |
| 1)      |                                             | the clinical state resure                                    | -                                   |                                      |              |            |
| 2)      |                                             | the exchange of thing<br>nce in amount of solu<br>b) Osmosis | utes.                               |                                      |              | rane       |
| 3)      | the electrode                               | coagulation electric and tissue. b) Soft                     |                                     | , ,                                  |              | n          |
| 4)      | 50 cm <sup>2</sup> electr                   | pacemaker may apposed on the chest. b) 8 A                   | •                                   | ·                                    |              |            |
| 5)      | The hazards current densition a) Electrosur | associated with<br>ty at a rate other thar                   | units<br>at which it i<br>b) Defibr | is burns o<br>s to be pro<br>illator | caused by ex | cess       |
| 6)      | a) Pace mak                                 | approximately 400<br>er<br>diathermy                         | b) Shorty                           | vave diath                           | -            | : <b>.</b> |

| 7)  |                                                                                 | tion is a serious<br>ction of the heart r               | •                                                     | ency resulting from           |
|-----|---------------------------------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------|-------------------------------|
|     | a) Synchronous                                                                  | b) Asynchronous                                         | s c) S.A. node                                        | d) Pericardium                |
| 8)  | Haemodialysis rem                                                               | noves                                                   | other than harmfu                                     | ıl wastes.                    |
|     | a) Protein                                                                      | b) Salt                                                 | c) Insulin                                            | d) Glycogen                   |
| 9)  | current intensity.                                                              | •                                                       |                                                       | defined shape and             |
|     | a) Period                                                                       | b) Pulses                                               | c) Cycles                                             | d) Waves                      |
| 10) | A condition in which                                                            | •                                                       | •                                                     |                               |
|     | a) Fibrillation                                                                 | b) Heart block                                          | c) Heart attack                                       | d) Tachycardia                |
| 11) | Surgical diathermy <ul><li>a) low frequency</li><li>c) high frequency</li></ul> |                                                         | s of a  <br>b) high voltage<br>d) medium frequ        |                               |
| 12) | Ultrasonic generate                                                             | ors are constructe                                      | ed on e                                               | effect.                       |
|     | a) EMF                                                                          | b) Faraday                                              | c) Piezoelectric                                      | d) Magnetic                   |
| 13) | The coil type dialyz wound into a coil.                                         | er consists of a tub                                    | oe made up of the                                     | material                      |
|     |                                                                                 |                                                         |                                                       |                               |
|     | a) Transparent                                                                  |                                                         | b) Biocompatiab                                       | le                            |
|     | <ul><li>a) Transparent</li><li>c) Semipermeable</li></ul>                       |                                                         |                                                       | le                            |
| 14) | c) Semipermeable<br>Heart block occurs                                          | e membrane                                              | d) Hollow fiber onduction system                      | fails to transmit the         |
| 14) | c) Semipermeable<br>Heart block occurs                                          | e membrane<br>s whenever the co<br>es from the atria to | d) Hollow fiber onduction system                      | fails to transmit the operty. |
| 14) | c) Semipermeable Heart block occurs impuls                                      | e membrane<br>s whenever the co<br>es from the atria to | d) Hollow fiber onduction system on the ventricles pr | fails to transmit the operty. |



| Seat |  |
|------|--|
| No.  |  |

# B.E. (Biomedical Engg.) (Part – I) (CGPA) Examination, 2018 BIOMEDICAL INSTRUMENTATION – III

Day and Date: Saturday, 5-5-2018 Marks: 56

Time: 2.30 p.m. to 5.30 p.m.

#### SECTION - I

### 2. Attempt any four questions :

 $(4 \times 4 = 16)$ 

- 1) With the help of neat diagram explain various application techniques of short wave therapy.
- 2) Explain various power sources used for pacemakers.
- 3) Explain circus motion theory of fibrillation for pacemaker.
- 4) Explain working of surgical diathermy analyzer with necessary diagram.
- 5) Explain construction and working of infrared and ultraviolet lamps.

### 3. Attempt any 2 questions:

 $(6 \times 2 = 12)$ 

- 1) Differentiate between internal and external pacemaker. Also explain construction of electrodes used for each of pacemaker.
- 2) Draw and explain working of cut and LOAG circuits of ESU.
- 3) With the help of circuit diagram explain working of ultrasonic therapy unit.

#### SECTION - II

## 4. Attempt **any four** questions :

 $(4 \times 4 = 16)$ 

- 1) Define and differentiate between atrial and ventricular fibrillation occurrence and how to overcome it.
- 2) Explain working of portable type dialysis machine in detail.
- 3) List various medical laser types and their medical applications.
- 4) Draw and explain working of defibrillator analyzers.
- 5) Describe the principle of dialysis machine.

# 5. Attempt any 2 questions:

 $(6 \times 2 = 12)$ 

- 1) Describe process of working of artificial kidney machine.
- 2) Explain with the help of neat circuit diagram of INST mode of defibrillator.
- 3) Draw circuit diagram of heart rate variability meter and explain its working also mention its applications.

# **SLR-TC - 463**

| Seat |  |
|------|--|
| No.  |  |

### B.E. (Biomedical Engg.) (CGPA) (Part – I) Examination, 2018 PRINCIPLES OF IMAGE PROCESSING

Total Marks: 70 Day and Date: Monday, 7-5-2018

Time: 2.30 p.m. to 5.30 p.m.

- Instructions: 1) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book Page No. 3. Each guestion carries one mark.
  - 2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

### MCQ/Objective Type Questions

**Duration: 30 Minutes** Marks: 14 1. Choose the correct answer:  $(14 \times 1 = 14)$ 1) Digital image with intensity level in range of [0, L-1] is called b) histogram c) graph d) truth table a)  $k_{man}$ 2) Image can be blurred using a) low pass filtering b) contouring d) high pass filter c) erosion 3) In  $M \times N$ , M is a number of a) intensity levels b) colors c) rows d) columns 4) A continuous image is digitized at \_\_\_\_\_ points. a) random b) vertex c) contour d) sampling is the tool used in tasks such as zooming, shrinking, rotating 5) \_\_\_\_\_ etc. a) Sampling b) Interpolation c) Filters d) None of above 6) The difference in intensity between the highest and the lowest intensity levels in an image is c) Contrast a) Noise b) Saturation d) Brightness

| 7)         | Enhancement of differences between images is based on the principle of                                                                                                                                                                                                                                                               |                                                                                                                                                                      |  |  |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|            | a) Additivity                                                                                                                                                                                                                                                                                                                        | b) Homogeneity                                                                                                                                                       |  |  |
|            | c) Subtraction                                                                                                                                                                                                                                                                                                                       | d) None of the above                                                                                                                                                 |  |  |
| 8)         | Image processing approaches opera work directly in                                                                                                                                                                                                                                                                                   | ting directly on pixels of input image                                                                                                                               |  |  |
|            | a) transform domain                                                                                                                                                                                                                                                                                                                  | b) spatial domain                                                                                                                                                    |  |  |
|            | c) inverse transformation                                                                                                                                                                                                                                                                                                            | d) none of the above                                                                                                                                                 |  |  |
| 9)         | Median filters belong to                                                                                                                                                                                                                                                                                                             | _ category of filter.                                                                                                                                                |  |  |
|            | a) linear spatial                                                                                                                                                                                                                                                                                                                    | b) frequency domain                                                                                                                                                  |  |  |
|            | c) order static                                                                                                                                                                                                                                                                                                                      | d) sharpening                                                                                                                                                        |  |  |
| 10)        | In type of slicing, highlin an image often is desired.                                                                                                                                                                                                                                                                               | ighting a specific range of gray levels                                                                                                                              |  |  |
|            | a) gray level slicing                                                                                                                                                                                                                                                                                                                | b) bit plane slicing                                                                                                                                                 |  |  |
|            | c) contrast stretching                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                      |  |  |
|            | ) of the following occurs in unsharp masking.                                                                                                                                                                                                                                                                                        |                                                                                                                                                                      |  |  |
| 11)        | of the following occur                                                                                                                                                                                                                                                                                                               | s in unsharp masking.                                                                                                                                                |  |  |
| 11)        |                                                                                                                                                                                                                                                                                                                                      | s in unsharp masking.                                                                                                                                                |  |  |
| 11)        | a) Blurring original image                                                                                                                                                                                                                                                                                                           | s in unsharp masking.                                                                                                                                                |  |  |
| 11)        |                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                      |  |  |
| 11)        | <ul><li>a) Blurring original image</li><li>b) Adding mask to original image</li></ul>                                                                                                                                                                                                                                                |                                                                                                                                                                      |  |  |
| 11)<br>12) | <ul><li>a) Blurring original image</li><li>b) Adding mask to original image</li><li>c) Subtracting blurred image from or</li><li>d) All above</li></ul>                                                                                                                                                                              | iginal                                                                                                                                                               |  |  |
|            | <ul><li>a) Blurring original image</li><li>b) Adding mask to original image</li><li>c) Subtracting blurred image from or</li><li>d) All above</li></ul>                                                                                                                                                                              | iginal<br>derivative operator.                                                                                                                                       |  |  |
| 12)        | <ul> <li>a) Blurring original image</li> <li>b) Adding mask to original image</li> <li>c) Subtracting blurred image from or</li> <li>d) All above</li> <li>is a second order of</li> </ul>                                                                                                                                           | iginal<br>derivative operator.<br>c) Gaussian d) None of above                                                                                                       |  |  |
| 12)        | <ul> <li>a) Blurring original image</li> <li>b) Adding mask to original image</li> <li>c) Subtracting blurred image from or</li> <li>d) All above</li> <li>is a second order of</li> <li>a) Histogram</li> <li>b) Laplacian</li> <li>What is accepting or rejecting certain</li> </ul>                                               | iginal<br>derivative operator.<br>c) Gaussian d) None of above                                                                                                       |  |  |
| 12)        | <ul> <li>a) Blurring original image</li> <li>b) Adding mask to original image</li> <li>c) Subtracting blurred image from or</li> <li>d) All above</li> <li>is a second order of</li> <li>a) Histogram</li> <li>b) Laplacian</li> <li>What is accepting or rejecting certain</li> <li>a) filtering</li> <li>b) eliminating</li> </ul> | iginal derivative operator. c) Gaussian d) None of above frequency components called as                                                                              |  |  |
| 12)<br>13) | <ul> <li>a) Blurring original image</li> <li>b) Adding mask to original image</li> <li>c) Subtracting blurred image from or</li> <li>d) All above</li> <li>is a second order of</li> <li>a) Histogram</li> <li>b) Laplacian</li> <li>What is accepting or rejecting certain</li> <li>a) filtering</li> <li>b) eliminating</li> </ul> | iginal derivative operator. c) Gaussian d) None of above frequency components called as c) slicing d) none of above ag a filter mask over the image and              |  |  |
| 12)<br>13) | a) Blurring original image b) Adding mask to original image c) Subtracting blurred image from or d) All above is a second order of a) Histogram b) Laplacian What is accepting or rejecting certain a) filtering b) eliminating is a process of movin                                                                                | iginal derivative operator. c) Gaussian d) None of above frequency components called as c) slicing d) none of above ag a filter mask over the image and              |  |  |
| 12)<br>13) | a) Blurring original image b) Adding mask to original image c) Subtracting blurred image from or d) All above is a second order of a) Histogram b) Laplacian What is accepting or rejecting certain a) filtering b) eliminating is a process of moving computing the sum of products at each                                         | iginal derivative operator. c) Gaussian d) None of above frequency components called as c) slicing d) none of above ag a filter mask over the image and ch location. |  |  |



| Seat |  |
|------|--|
| No.  |  |

# B.E. (Biomedical Engg.) (CGPA) (Part – I) Examination, 2018 PRINCIPLES OF IMAGE PROCESSING

Day and Date: Monday, 7-5-2018 Marks: 56

Time: 2.30 p.m. to 5.30 p.m.

#### SECTION - I

2. Attempt any four questions:

 $(4 \times 4 = 16)$ 

- 1) Explain with a block diagram the components of an image processing system.
- 2) What is the transform matrix for N = 4 to discrete cosine transform?
- 3) Describe concept of region oriented segmentation with an example.
- 4) Explain any 2 properties with expression of 2D DFT.
- 5) Explain following terms with diagram:
  - a) Neighbours of pixel
  - b) Connectivity
  - c) Adjacency
  - d) Path.

3. Attempt any 2 questions:

 $(6 \times 2 = 12)$ 

- 1) Explain homomorphic filters with the help of a neat diagram.
- 2) Apply low pass filter and high pass filter on the given image and show the intermediate results.

| 4 | 3 | 7 |
|---|---|---|
| 1 | 6 | 3 |
| 1 | 4 | 6 |

3) What is histogram? State the difference between histogram equalization and histogram matching.

#### SECTION - II

4. Attempt any four questions:

 $(4 \times 4 = 16)$ 

- 1) Differentiate between lossy and lossless compression.
- 2) Explain following morphological operation:
  - i) Dilation
  - ii) Erosion
  - iii) Opening
  - iv) Closing.
- 3) Explain the basic concept of Harr transform and their applications.
- 4) Explain the concept process and application of run length encoding.
- 5) Discuss transform coding and predictive coding with their application.
- 5. Attempt any 2 questions:

 $(6 \times 2 = 12)$ 

1) What is Hadomard transform? Calculate Hadomard transform of following image.

| 4 | 1 | 3 | 2 |
|---|---|---|---|
| 1 | 5 | 2 | 3 |
| 3 | 2 | 1 | 2 |
| 2 | 3 | 2 | 1 |

2) Explain discrete cosine transform and compute DCT for the given image.

|           | 2 | 1 | 2 | 1 |
|-----------|---|---|---|---|
| f(x, y) = | 1 | 2 | 3 | 2 |
| .(**, ))  | 2 | 3 | 4 | 3 |
|           | 1 | 2 | 3 | 2 |

- 3) Write a short note on:
  - a) Boundary extraction methods and application.
  - b) Skeletonization and its application.
  - c) Hit and miss transform.

| <br> | <br> |  |
|------|------|--|

**SLR-TC - 463** 

| Seat<br>No. | Set | Q |
|-------------|-----|---|
|-------------|-----|---|

# B.E. (Biomedical Engg.) (CGPA) (Part – I) Examination, 2018 PRINCIPLES OF IMAGE PROCESSING

Day and Date: Monday, 7-5-2018 Total Marks: 70

Time: 2.30 p.m. to 5.30 p.m.

d) All above

- Instructions: 1) Q. No. 1 is compulsory. It should be solved in first
  30 minutes in Answer Book Page No. 3. Each question
  carries one mark.
  - 2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

### MCQ/Objective Type Questions

Duration: 30 Minutes Marks: 14 1. Choose the correct answer:  $(14 \times 1 = 14)$ 1) Image processing approaches operating directly on pixels of input image work directly in a) transform domain b) spatial domain c) inverse transformation d) none of the above 2) Median filters belong to \_\_\_\_\_ category of filter. b) frequency domain a) linear spatial c) order static d) sharpening 3) In \_\_\_\_\_ type of slicing, highlighting a specific range of gray levels in an image often is desired. a) gray level slicing b) bit plane slicing c) contrast stretching d) byte level slicing 4) \_\_\_\_\_ of the following occurs in unsharp masking. a) Blurring original image b) Adding mask to original image c) Subtracting blurred image from original

| 5)  | is a second order derivative operator.                                                            |                      |                                |                        |
|-----|---------------------------------------------------------------------------------------------------|----------------------|--------------------------------|------------------------|
|     | a) Histogram                                                                                      | b) Laplacian         | c) Gaussian                    | d) None of above       |
| 6)  | What is accepting o                                                                               | r rejecting certain  | frequency comp                 | onents called as       |
|     | a) filtering                                                                                      | b) eliminating       | c) slicing                     | d) none of above       |
| 7)  | is a computing the sum                                                                            | =                    | _                              | over the image and     |
|     | a) Convolution                                                                                    | or production at our |                                |                        |
|     | ,                                                                                                 |                      | d) Nonlinear spatial filtering |                        |
| 8)  | Digital image with intensity level in range of [0, L – 1] is called                               |                      |                                |                        |
| ,   |                                                                                                   | -                    | c) graph                       |                        |
| 9)  | ) Image can be blurred using                                                                      |                      |                                |                        |
|     | a) low pass filtering                                                                             | I                    | b) contouring                  |                        |
|     | c) erosion                                                                                        |                      | d) high pass filter            |                        |
| 10) | In $M \times N$ , $M$ is a nu                                                                     | mber of              |                                |                        |
|     | a) intensity levels                                                                               | b) colors            | c) rows                        | d) columns             |
| 11) | A continuous image                                                                                | e is digitized at    | points.                        |                        |
|     | a) random                                                                                         | b) vertex            | c) contour                     | d) sampling            |
| 12) | is the                                                                                            | e tool used in task  | s such as zoomin               | g, shrinking, rotating |
|     | etc.                                                                                              |                      |                                |                        |
|     | a) Sampling                                                                                       | b) Interpolation     | c) Filters                     | d) None of above       |
| 13) | B) The difference in intensity between the highest and the lowest intensity levels in an image is |                      |                                |                        |
|     | a) Noise                                                                                          | b) Saturation        | c) Contrast                    | d) Brightness          |
| 14) | Enhancement of dif                                                                                | ferences betweer     | n images is based              | I on the principle of  |
|     | a) Additivity                                                                                     |                      | b) Homogeneity                 |                        |
|     | c) Subtraction                                                                                    |                      | d) None of the a               | bove                   |
|     |                                                                                                   |                      |                                |                        |



| Seat |  |
|------|--|
| No.  |  |

# B.E. (Biomedical Engg.) (CGPA) (Part – I) Examination, 2018 PRINCIPLES OF IMAGE PROCESSING

Day and Date: Monday, 7-5-2018 Marks: 56

Time: 2.30 p.m. to 5.30 p.m.

#### SECTION - I

2. Attempt any four questions:

 $(4 \times 4 = 16)$ 

- 1) Explain with a block diagram the components of an image processing system.
- 2) What is the transform matrix for N = 4 to discrete cosine transform?
- 3) Describe concept of region oriented segmentation with an example.
- 4) Explain any 2 properties with expression of 2D DFT.
- 5) Explain following terms with diagram:
  - a) Neighbours of pixel
  - b) Connectivity
  - c) Adjacency
  - d) Path.

3. Attempt any 2 questions:

 $(6 \times 2 = 12)$ 

- 1) Explain homomorphic filters with the help of a neat diagram.
- 2) Apply low pass filter and high pass filter on the given image and show the intermediate results.

| 4 | 3 | 7 |
|---|---|---|
| 1 | 6 | 3 |
| 1 | 4 | 6 |

3) What is histogram? State the difference between histogram equalization and histogram matching.

# 

#### SECTION - II

4. Attempt any four questions:

 $(4 \times 4 = 16)$ 

- 1) Differentiate between lossy and lossless compression.
- 2) Explain following morphological operation:
  - i) Dilation
  - ii) Erosion
  - iii) Opening
  - iv) Closing.
- 3) Explain the basic concept of Harr transform and their applications.
- 4) Explain the concept process and application of run length encoding.
- 5) Discuss transform coding and predictive coding with their application.
- 5. Attempt any 2 questions:

 $(6 \times 2 = 12)$ 

1) What is Hadomard transform? Calculate Hadomard transform of following image.

| 4 | 1 | 3 | 2 |
|---|---|---|---|
| 1 | 5 | 2 | 3 |
| 3 | 2 | 1 | 2 |
| 2 | 3 | 2 | 1 |

2) Explain discrete cosine transform and compute DCT for the given image.

| f(x, y) = | 2 | 1 | 2 | 1 |
|-----------|---|---|---|---|
|           | 1 | 2 | 3 | 2 |
|           | 2 | 3 | 4 | 3 |
|           | 1 | 2 | 3 | 2 |

- 3) Write a short note on:
  - a) Boundary extraction methods and application.
  - b) Skeletonization and its application.
  - c) Hit and miss transform.

| <br> | <br> | <br> |
|------|------|------|

| Seat |  |
|------|--|
| No.  |  |

Set

R

# B.E. (Biomedical Engg.) (CGPA) (Part – I) Examination, 2018 PRINCIPLES OF IMAGE PROCESSING

Day and Date: Monday, 7-5-2018 Total Marks: 70

Time: 2.30 p.m. to 5.30 p.m.

c) order static

- Instructions: 1) Q. No. 1 is compulsory. It should be solved in first
  30 minutes in Answer Book Page No. 3. Each question
  carries one mark.
  - 2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

### MCQ/Objective Type Questions

**Duration: 30 Minutes** Marks: 14 1. Choose the correct answer:  $(14 \times 1 = 14)$ \_\_\_\_\_ is the tool used in tasks such as zooming, shrinking, rotating 1) etc. b) Interpolation c) Filters d) None of above a) Sampling 2) The difference in intensity between the highest and the lowest intensity levels in an image is \_\_\_\_\_ a) Noise b) Saturation c) Contrast d) Brightness 3) Enhancement of differences between images is based on the principle of b) Homogeneity a) Additivity c) Subtraction d) None of the above 4) Image processing approaches operating directly on pixels of input image work directly in a) transform domain b) spatial domain d) none of the above c) inverse transformation 5) Median filters belong to \_\_\_\_\_ category of filter. a) linear spatial b) frequency domain

d) sharpening

| 6)           | In typ in an image often is |                      | ighting a specific range of gray levels |                    |  |  |  |
|--------------|-----------------------------|----------------------|-----------------------------------------|--------------------|--|--|--|
|              | a) gray level slicing       |                      | b) bit plane slicing                    |                    |  |  |  |
|              | c) contrast stretching      |                      | d) byte level slice                     |                    |  |  |  |
| ٦١           | •                           |                      | , ,                                     | o .                |  |  |  |
| 7)           |                             | _                    | s in unsharp mas                        | sking.             |  |  |  |
|              | a) Blurring original        | J                    |                                         |                    |  |  |  |
|              | b) Adding mask to           |                      | ,                                       |                    |  |  |  |
|              | c) Subtracting blurr        | red image from or    | iginal                                  |                    |  |  |  |
|              | d) All above                |                      |                                         |                    |  |  |  |
| 8)           | is                          | a second order of    | derivative operato                      | or.                |  |  |  |
|              | a) Histogram                | b) Laplacian         | c) Gaussian                             | d) None of above   |  |  |  |
| 9)           | What is accepting of        | r rejecting certain  | n frequency components called as        |                    |  |  |  |
|              | a) filtering                | b) eliminating       | c) slicing                              | d) none of above   |  |  |  |
| 10)          | is a                        | process of movir     | ng a filter mask o                      | over the image and |  |  |  |
|              | computing the sum           | of products at each  | ch location.                            |                    |  |  |  |
|              | a) Convolution              |                      | b) Correlation                          |                    |  |  |  |
|              | c) Linear and spatia        | al filtering         | d) Nonlinear spa                        | atial filtering    |  |  |  |
| 11)          | Digital image with ir       | ntensity level in ra | nge of [0, L – 1] i                     | s called           |  |  |  |
|              | a) k <sub>map</sub>         | b) histogram         | c) graph                                | d) truth table     |  |  |  |
| 12)          | Image can be blurre         | ed using             |                                         |                    |  |  |  |
|              | a) low pass filtering       |                      | b) contouring                           |                    |  |  |  |
|              | c) erosion                  |                      | d) high pass filter                     |                    |  |  |  |
| 13)          | In M × N, M is a nu         | mber of              |                                         |                    |  |  |  |
| ,            | a) intensity levels         |                      | c) rows                                 | d) columns         |  |  |  |
| 14)          | A continuous image          |                      |                                         |                    |  |  |  |
| · ' <i>)</i> | a) random                   |                      |                                         |                    |  |  |  |
|              | a, random                   | S, VOITON            | o, contour                              | a, bamping         |  |  |  |
|              |                             |                      |                                         |                    |  |  |  |



| Seat |  |
|------|--|
| No.  |  |

# B.E. (Biomedical Engg.) (CGPA) (Part – I) Examination, 2018 PRINCIPLES OF IMAGE PROCESSING

Day and Date: Monday, 7-5-2018 Marks: 56

Time: 2.30 p.m. to 5.30 p.m.

#### SECTION - I

2. Attempt any four questions:

 $(4 \times 4 = 16)$ 

- 1) Explain with a block diagram the components of an image processing system.
- 2) What is the transform matrix for N = 4 to discrete cosine transform?
- 3) Describe concept of region oriented segmentation with an example.
- 4) Explain any 2 properties with expression of 2D DFT.
- 5) Explain following terms with diagram:
  - a) Neighbours of pixel
  - b) Connectivity
  - c) Adjacency
  - d) Path.

3. Attempt any 2 questions :

 $(6 \times 2 = 12)$ 

- 1) Explain homomorphic filters with the help of a neat diagram.
- 2) Apply low pass filter and high pass filter on the given image and show the intermediate results.

| 4 | 3 | 7 |
|---|---|---|
| 1 | 6 | 3 |
| 1 | 4 | 6 |

3) What is histogram? State the difference between histogram equalization and histogram matching.

# 

#### SECTION - II

4. Attempt any four questions:

 $(4 \times 4 = 16)$ 

- 1) Differentiate between lossy and lossless compression.
- 2) Explain following morphological operation:
  - i) Dilation
  - ii) Erosion
  - iii) Opening
  - iv) Closing.
- 3) Explain the basic concept of Harr transform and their applications.
- 4) Explain the concept process and application of run length encoding.
- 5) Discuss transform coding and predictive coding with their application.
- 5. Attempt any 2 questions:

 $(6 \times 2 = 12)$ 

1) What is Hadomard transform? Calculate Hadomard transform of following image.

| 4 | 1 | 3 | 2 |
|---|---|---|---|
| 1 | 5 | 2 | 3 |
| 3 | 2 | 1 | 2 |
| 2 | 3 | 2 | 1 |

2) Explain discrete cosine transform and compute DCT for the given image.

| f(x, y) = | 2 | 1 | 2 | 1 |
|-----------|---|---|---|---|
|           | 1 | 2 | 3 | 2 |
|           | 2 | 3 | 4 | 3 |
|           | 1 | 2 | 3 | 2 |

- 3) Write a short note on:
  - a) Boundary extraction methods and application.
  - b) Skeletonization and its application.
  - c) Hit and miss transform.

| <br> | <br> | Ш | <br> | 11111 | ••• |
|------|------|---|------|-------|-----|

| Seat |  |
|------|--|
| No.  |  |

Set

S

# B.E. (Biomedical Engg.) (CGPA) (Part – I) Examination, 2018 PRINCIPLES OF IMAGE PROCESSING

Day and Date: Monday, 7-5-2018 Total Marks: 70

Time: 2.30 p.m. to 5.30 p.m.

a) filtering

- Instructions: 1) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book Page No. 3. Each question carries one mark.
  - 2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

### **MCQ/Objective Type Questions**

Duration: 30 Minutes Marks: 14 1. Choose the correct answer:  $(14 \times 1 = 14)$ 1) In \_\_\_\_\_ type of slicing, highlighting a specific range of gray levels in an image often is desired. b) bit plane slicing a) gray level slicing c) contrast stretching d) byte level slicing 2) \_\_\_\_\_ of the following occurs in unsharp masking. a) Blurring original image b) Adding mask to original image c) Subtracting blurred image from original d) All above 3) \_\_\_\_\_ is a second order derivative operator. b) Laplacian c) Gaussian d) None of above a) Histogram 4) What is accepting or rejecting certain frequency components called as

b) eliminating c) slicing d) none of above

| 5)  | is a computing the sum                     | _                    |                | vei               | the image and |                    |  |
|-----|--------------------------------------------|----------------------|----------------|-------------------|---------------|--------------------|--|
|     | a) Convolution                             |                      | b) Correlation |                   |               |                    |  |
|     | c) Linear and spatia                       | al filtering         | d)             | Nonlinear spa     | atia          | filtering          |  |
| 6)  | Digital image with in                      | ntensity level in ra | ng             | e of [0, L – 1] i | s ca          | alled              |  |
|     | a) k <sub>map</sub>                        | b) histogram         | c)             | graph             | d)            | truth table        |  |
| 7)  | Image can be blurre                        | ed using             |                |                   |               |                    |  |
|     | a) low pass filtering                      | I                    | b)             | contouring        |               |                    |  |
|     | c) erosion                                 |                      | d)             | high pass filte   | er            |                    |  |
| 8)  | In $M \times N$ , $M$ is a nu              | mber of              |                |                   |               |                    |  |
|     | a) intensity levels                        | b) colors            | c)             | rows              | d)            | columns            |  |
| 9)  | A continuous image                         | e is digitized at    |                | points.           |               |                    |  |
|     | a) random                                  | b) vertex            | c)             | contour           | d)            | sampling           |  |
| 10) | etc.                                       | e tool used in task  | SS             | uch as zoomin     | g, s          | hrinking, rotating |  |
|     | a) Sampling                                | b) Interpolation     | c)             | Filters           | d)            | None of above      |  |
| 11) | The difference in in levels in an image is | -                    | the            | highest and       | the           | lowest intensity   |  |
|     | a) Noise                                   | b) Saturation        | c)             | Contrast          | d)            | Brightness         |  |
| 12) | Enhancement of dif                         | ferences betweer     | ı im           | nages is based    | l on          | the principle of   |  |
|     | a) Additivity                              |                      | b)             | Homogeneity       |               |                    |  |
|     | c) Subtraction                             |                      | d)             | None of the a     | bov           | /e                 |  |
| 13) | Image processing a work directly in        | approaches opera     | ıtin           | g directly on p   | ixel          | s of input image   |  |
|     | a) transform domai                         | n                    | b)             | spatial domai     | n             |                    |  |
|     | c) inverse transform                       | nation               | d)             | none of the a     | bov           | re e               |  |
| 14) | Median filters belon                       | g to                 | _ c            | ategory of filte  | r.            |                    |  |
|     | a) linear spatial                          |                      | b)             | frequency do      | mai           | n                  |  |
|     | c) order static                            |                      | d)             | sharpening        |               |                    |  |
|     |                                            |                      |                |                   |               |                    |  |



| Seat |  |
|------|--|
| No.  |  |

# B.E. (Biomedical Engg.) (CGPA) (Part – I) Examination, 2018 PRINCIPLES OF IMAGE PROCESSING

Day and Date: Monday, 7-5-2018 Marks: 56

Time: 2.30 p.m. to 5.30 p.m.

#### SECTION - I

2. Attempt any four questions:

 $(4 \times 4 = 16)$ 

- Explain with a block diagram the components of an image processing system.
- 2) What is the transform matrix for N = 4 to discrete cosine transform?
- 3) Describe concept of region oriented segmentation with an example.
- 4) Explain any 2 properties with expression of 2D DFT.
- 5) Explain following terms with diagram:
  - a) Neighbours of pixel
  - b) Connectivity
  - c) Adjacency
  - d) Path.

3. Attempt any 2 questions:

 $(6 \times 2 = 12)$ 

- 1) Explain homomorphic filters with the help of a neat diagram.
- 2) Apply low pass filter and high pass filter on the given image and show the intermediate results.

| 4 | 3 | 7 |
|---|---|---|
| 1 | 6 | 3 |
| 1 | 4 | 6 |

3) What is histogram? State the difference between histogram equalization and histogram matching.

# 

#### SECTION - II

4. Attempt any four questions:

 $(4 \times 4 = 16)$ 

- 1) Differentiate between lossy and lossless compression.
- 2) Explain following morphological operation:
  - i) Dilation
  - ii) Erosion
  - iii) Opening
  - iv) Closing.
- 3) Explain the basic concept of Harr transform and their applications.
- 4) Explain the concept process and application of run length encoding.
- 5) Discuss transform coding and predictive coding with their application.
- 5. Attempt any 2 questions:

 $(6 \times 2 = 12)$ 

1) What is Hadomard transform? Calculate Hadomard transform of following image.

| 4 | 1 | 3 | 2 |
|---|---|---|---|
| 1 | 5 | 2 | 3 |
| 3 | 2 | 1 | 2 |
| 2 | 3 | 2 | 1 |

2) Explain discrete cosine transform and compute DCT for the given image.

| f(x, y) = | 2 | 1 | 2 | 1 |
|-----------|---|---|---|---|
|           | 1 | 2 | 3 | 2 |
|           | 2 | 3 | 4 | 3 |
|           | 1 | 2 | 3 | 2 |

- 3) Write a short note on:
  - a) Boundary extraction methods and application.
  - b) Skeletonization and its application.
  - c) Hit and miss transform.

| Seat |  |
|------|--|
| No.  |  |

Set

Р

# B.E. (Biomedical) (Part – I) (CGPA) Examination, 2018 HOSPITAL MANAGEMENT

Day and Date: Tuesday, 8-5-2018 Max. Marks: 70

Time: 2.30 p.m. to 5.30 p.m.

Instructions: 1) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book Page No. 3. Each question carries one mark.

2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

**MCQ/Objective Type Questions** 

Duration: 30 Minutes Marks: 14

1. Choose the correct answer:

 $(14 \times 1 = 14)$ 

- 1) Organization effectiveness comprises all except
  - a) Productivity power
  - b) Adaptability to change
  - c) Flexibility in structure and strategy
  - d) Rigidity in structure
- Concept behind changing the role of hospital from indoor care includes all except
  - a) Rising cost of hospital care
- b) Increase of hospital bed
- c) Shortage of hospital bed
- d) Economic importance
- 3) Which of the following is a basic of classification of hospital?
  - a) Hospital practice

- b) Length of stay of patient
- c) Educational purpose
- d) Medical staff
- 4) Which of the following is a function of emergency care?
  - a) First aid

- b) Dietary management
- c) Immediate resuscitation
- d) Hospitalization
- 5) Which of the following facility is not needed in emergency department?
  - a) Examination room
- b) Treatment room

c) Observation area

d) Cafeteria



| 6)  | What are the primary objectives of human resource management in hospital services ?  a) To motivate the employees b) To create good organization relation c) Co-ordination d) Contribution of services                        |                                                                             |  |  |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|--|--|
| 7)  | The section performs que body fluids, secretions and substance a) Hematology c) Blood bank                                                                                                                                    |                                                                             |  |  |
| 8)  | Gas sterilization is done using a) Ethylene oxide c) Methylene oxide                                                                                                                                                          | <ul><li>b) Ethylene dioxide</li><li>d) Steam</li></ul>                      |  |  |
| 9)  | <ul><li> is the skeleton of organia</li><li>a) Organizational function</li><li>c) Decentralization</li></ul>                                                                                                                  |                                                                             |  |  |
| 10) | Which is the nurse-patient ratio in ge a) 2:10 b) 2:6                                                                                                                                                                         | neral wards within a hospital ? c) 1:5 d) 1:3                               |  |  |
| 11) | The total process of collecting, handl and final treatment of waste is called a) Sewage c) Dustbin                                                                                                                            | ing, packing, storage, transportation b) Disposal of hospital waste d) None |  |  |
| 12) | <ul> <li>Which of the following should be included in efficient material management in hospital?</li> <li>a) A list materials</li> <li>b) Procurement</li> <li>c) Taking an inventory</li> <li>d) All of the above</li> </ul> |                                                                             |  |  |
| 13) | Which of the following is not a materi<br>a) Drugs and medicine<br>c) Supplies                                                                                                                                                | al used in hospital and community? b) Transport d) Equipment and instrument |  |  |
| 14) | <ul><li>Which of the service is not part of prea</li><li>a) Sentinel surveillance</li><li>b) Nutritional counselling</li><li>c) Non communicable disease preved</li><li>d) OPD prevention</li></ul>                           |                                                                             |  |  |



| Seat |  |
|------|--|
| No.  |  |

# B.E. (Biomedical) (Part – I) (CGPA) Examination, 2018 HOSPITAL MANAGEMENT

Day and Date: Tuesday, 8-5-2018 Marks: 56

Time: 2.30 p.m. to 5.30 p.m.

#### SECTION - I

#### 2. Answer any four questions:

 $(4 \times 3 = 12)$ 

- 1) Write a short note on leadership and motivation.
- 2) Write a short note on CIS and HIS.
- 3) Explain about the planning of individual department.
- 4) Explain about the role of H. R. Management.
- 5) Explain about the planning of administrative service.
- 6) Write a note on Time Management.

#### 3. Answer any two questions:

 $(2 \times 8 = 16)$ 

- 1) Briefly explain about principles of management.
- 2) Explain about the need and responsibilities and function of CEO in hospital.
- 3) Explain about the classification of Hospitals based on various factors and associated norms.

#### SECTION - II

### 4. Answer **any four** questions:

 $(4 \times 3 = 12)$ 

- 1) Explain about the basics of Hospital Budgeting.
- 2) Explain the role of civil engineer.
- 3) Explain about the quality assurance.
- 4) Explain about the dietary (food services).
- 5) Explain about the risk management.
- 6) Explain the importance of pharmacy department in hospital.

## 5. Answer **any two** questions:

 $(2 \times 8 = 16)$ 

- 1) Explain about the economics and financial management in Hospital.
- 2) Explain briefly about ICU departments and explain its categorization.
- 3) Explain the role of electrical and mechanical engineering departments.

| Seat |  |
|------|--|
| No.  |  |

Set Q

|         | B.E. (Biomedical) (Part – I) (C<br>HOSPITAL MA                                                              |                                                                                                                                                   |
|---------|-------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| •       | d Date : Tuesday, 8-5-2018<br>2.30 p.m. to 5.30 p.m.                                                        | Max. Marks : 70                                                                                                                                   |
|         | carries <b>one</b> mark.<br>2) <b>Answer MCQ/Obj</b>                                                        | Ilsory. It should be solved in first 30 or Book Page No. 3. Each question ective type questions on Page No. let to mention, Q.P. Set (P/Q/R/S) on |
|         | MCQ/Objective Ty                                                                                            | /pe Questions                                                                                                                                     |
| Duratio | on: 30 Minutes                                                                                              | Marks: 14                                                                                                                                         |
| 1. Ch   | oose the correct answer :                                                                                   | (14×1=14)                                                                                                                                         |
| 1)      | Gas sterilization is done using a) Ethylene oxide c) Methylene oxide                                        | <ul><li>b) Ethylene dioxide</li><li>d) Steam</li></ul>                                                                                            |
| 2)      | <ul><li> is the skeleton of organ</li><li>a) Organizational function</li><li>c) Decentralization</li></ul>  |                                                                                                                                                   |
| 3)      | Which is the nurse-patient ratio in ge a) 2:10 b) 2:6                                                       | neral wards within a hospital ? c) 1:5 d) 1:3                                                                                                     |
| 4)      | The total process of collecting, handl<br>and final treatment of waste is called<br>a) Sewage<br>c) Dustbin | ing, packing, storage, transportation b) Disposal of hospital waste d) None                                                                       |
| 5)      | Which of the following should be incluin hospital?  a) A list materials c) Taking an inventory              |                                                                                                                                                   |
| 6)      | Which of the following is not a materia) Drugs and medicine c) Supplies                                     | al used in hospital and community? b) Transport d) Equipment and instrument                                                                       |



| 7)  | <ul> <li>which of the service is not part of preventive care?</li> <li>a) Sentinel surveillance</li> <li>b) Nutritional counselling</li> <li>c) Non communicable disease prevention</li> <li>d) OPD prevention</li> </ul> |                                                                          |  |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|--|
| 8)  | Organization effectiveness comprises <ul><li>a) Productivity power</li><li>b) Adaptability to change</li><li>c) Flexibility in structure and strategy</li><li>d) Rigidity in structure</li></ul>                          | ·                                                                        |  |
| 9)  | Concept behind changing the role of all except a) Rising cost of hospital care c) Shortage of hospital bed                                                                                                                | •                                                                        |  |
| 10) | Which of the following is a basic of cl<br>a) Hospital practice<br>c) Educational purpose                                                                                                                                 | assification of hospital ? b) Length of stay of patient d) Medical staff |  |
| 11) | Which of the following is a function of a) First aid c) Immediate resuscitation                                                                                                                                           | f emergency care ? b) Dietary management d) Hospitalization              |  |
| 12) | Which of the following facility is not n a) Examination room c) Observation area                                                                                                                                          | eeded in emergency department ? b) Treatment room d) Cafeteria           |  |
| 13) | What are the primary objectives of human hospital services?  a) To motivate the employees b) To create good organization relation c) Co-ordination d) Contribution of services                                            |                                                                          |  |
| 14) | The section performs que body fluids, secretions and substance a) Hematology c) Blood bank                                                                                                                                |                                                                          |  |



| Seat |  |
|------|--|
| No.  |  |

# B.E. (Biomedical) (Part – I) (CGPA) Examination, 2018 HOSPITAL MANAGEMENT

Day and Date: Tuesday, 8-5-2018 Marks: 56

Time: 2.30 p.m. to 5.30 p.m.

#### SECTION - I

#### 2. Answer any four questions:

 $(4 \times 3 = 12)$ 

- 1) Write a short note on leadership and motivation.
- 2) Write a short note on CIS and HIS.
- 3) Explain about the planning of individual department.
- 4) Explain about the role of H. R. Management.
- 5) Explain about the planning of administrative service.
- 6) Write a note on Time Management.

#### 3. Answer any two questions:

 $(2 \times 8 = 16)$ 

- 1) Briefly explain about principles of management.
- 2) Explain about the need and responsibilities and function of CEO in hospital.
- 3) Explain about the classification of Hospitals based on various factors and associated norms.

#### SECTION - II

### 4. Answer **any four** questions:

 $(4 \times 3 = 12)$ 

- 1) Explain about the basics of Hospital Budgeting.
- 2) Explain the role of civil engineer.
- 3) Explain about the quality assurance.
- 4) Explain about the dietary (food services).
- 5) Explain about the risk management.
- 6) Explain the importance of pharmacy department in hospital.

## 5. Answer **any two** questions:

 $(2 \times 8 = 16)$ 

- 1) Explain about the economics and financial management in Hospital.
- 2) Explain briefly about ICU departments and explain its categorization.
- 3) Explain the role of electrical and mechanical engineering departments.

| SLF | R-T | C - | 464 |
|-----|-----|-----|-----|
|-----|-----|-----|-----|



| Seat | Set | D |
|------|-----|---|
| No.  | 361 | ח |

|        | B.E. (Biomedical) (Part – I) (CGPA) Examination, 2018 HOSPITAL MANAGEMENT                                                                                                |                         |                                    |                     |  |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|------------------------------------|---------------------|--|
| -      | nd Date : Tuesday, 8-5-2018<br>2.30 p.m. to 5.30 p.m.                                                                                                                    |                         | Ma                                 | x. Marks : 70       |  |
|        | carries <b>one</b> mark.<br>2) <b>Answer MCQ/Ob</b> j                                                                                                                    | er Book l<br>ijective t | Page No. <b>3</b> . <b>Each</b> qu | uestion<br>Page No. |  |
| Durati | MCQ/Objective Ty                                                                                                                                                         | ype Que                 | estions                            | Marka i 14          |  |
| Duraii | on : 30 Minutes                                                                                                                                                          |                         |                                    | Marks: 14           |  |
| 1. Ch  | noose the correct answer:                                                                                                                                                |                         |                                    | (14×1=14)           |  |
| 1)     | <ul><li>Which of the following facility is not r</li><li>a) Examination room</li><li>c) Observation area</li></ul>                                                       |                         | atment room                        | ment ?              |  |
| 2)     | What are the primary objectives of he hospital services?  a) To motivate the employees b) To create good organization relat c) Co-ordination d) Contribution of services |                         | source managemen                   | t in                |  |
| 3)     | The section performs q body fluids, secretions and substanc a) Hematology c) Blood bank                                                                                  | ces found<br>b) Biod    |                                    | nalysis of          |  |
| 4)     | Gas sterilization is done using a) Ethylene oxide c) Methylene oxide                                                                                                     | b) Ethy                 | ylene dioxide<br>am                |                     |  |
| 5)     | <ul><li>a) Organizational function</li><li>c) Decentralization</li></ul>                                                                                                 | b) Org                  | anization structure ordination     |                     |  |



| 6)  | Which is the nurse-a) 2:10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | patient ratio in gel<br>b) 2:6        |     | al wards within a                                     | a hospital ?<br>d) 1 : 3 |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-----|-------------------------------------------------------|--------------------------|
| 7)  | The total process o and final treatment a) Sewage c) Dustbin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       | b)  | , packing, storag<br>Disposal of hos<br>None          | -                        |
| 8)  | Which of the followin hospital?  a) A list materials  c) Taking an invention                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       | b)  | d in efficient mat<br>Procurement<br>All of the above | -                        |
| 9)  | Which of the following a) Drugs and medical Control of the following and the f | -                                     | b)  | ised in hospital<br>Transport<br>Equipment and        | -                        |
| 10) | Which of the service a) Sentinel surveille b) Nutritional couns c) Non communica d) OPD prevention                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ance<br>selling<br>.ble disease preve |     |                                                       |                          |
| 11) | Organization effection a) Productivity powers b) Adaptability to cc c) Flexibility in struct d) Rigidity in struct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ver<br>hange<br>cture and strategy    |     | I except                                              |                          |
| 12) | Concept behind cha                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | anging the role of                    | hos | spital from indoc                                     | or care includes         |
|     | <ul><li>a) Rising cost of hos</li><li>c) Shortage of hos</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | •                                     | •   | Increase of hos<br>Economic impo                      | •                        |
| 13) | Which of the following a) Hospital practice c) Educational purp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | e                                     | b)  | sification of hosp<br>Length of stay<br>Medical staff |                          |
| 14) | Which of the following a) First aid c) Immediate resus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       | b)  | nergency care ?<br>Dietary manag<br>Hospitalization   | ement                    |



| Seat |  |
|------|--|
| No.  |  |

# B.E. (Biomedical) (Part – I) (CGPA) Examination, 2018 HOSPITAL MANAGEMENT

Day and Date: Tuesday, 8-5-2018 Marks: 56

Time: 2.30 p.m. to 5.30 p.m.

#### SECTION - I

#### 2. Answer any four questions:

 $(4 \times 3 = 12)$ 

- 1) Write a short note on leadership and motivation.
- 2) Write a short note on CIS and HIS.
- 3) Explain about the planning of individual department.
- 4) Explain about the role of H. R. Management.
- 5) Explain about the planning of administrative service.
- 6) Write a note on Time Management.

#### 3. Answer any two questions:

 $(2 \times 8 = 16)$ 

- 1) Briefly explain about principles of management.
- 2) Explain about the need and responsibilities and function of CEO in hospital.
- 3) Explain about the classification of Hospitals based on various factors and associated norms.

#### SECTION - II

### 4. Answer **any four** questions:

 $(4 \times 3 = 12)$ 

- 1) Explain about the basics of Hospital Budgeting.
- 2) Explain the role of civil engineer.
- 3) Explain about the quality assurance.
- 4) Explain about the dietary (food services).
- 5) Explain about the risk management.
- 6) Explain the importance of pharmacy department in hospital.

# 5. Answer **any two** questions:

 $(2 \times 8 = 16)$ 

- 1) Explain about the economics and financial management in Hospital.
- 2) Explain briefly about ICU departments and explain its categorization.
- 3) Explain the role of electrical and mechanical engineering departments.

| Seat |  |
|------|--|
| No.  |  |

# B.E. (Biomedical) (Part – I) (CGPA) Examination, 2018 **HOSPITAL MANAGEMENT**

Day and Date: Tuesday, 8-5-2018 Max. Marks: 70

Time: 2.30 p.m. to 5.30 p.m.

Instructions: 1) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book Page No. 3. Each question carries one mark.

> 2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

### MCQ/Objective Type Questions

**Duration: 30 Minutes** Marks: 14

1. Choose the correct answer:

 $(14 \times 1 = 14)$ 

- 1) Which is the nurse-patient ratio in general wards within a hospital? b) 2:6 c) 1:5 a) 2:10 d) 1:3

- 2) The total process of collecting, handling, packing, storage, transportation and final treatment of waste is called
  - a) Sewage

b) Disposal of hospital waste

c) Dustbin

- d) None
- 3) Which of the following should be included in efficient material management in hospital?
  - a) A list materials

- b) Procurement
- c) Taking an inventory
- d) All of the above
- 4) Which of the following is not a material used in hospital and community?
  - a) Drugs and medicine
- b) Transport

c) Supplies

- d) Equipment and instrument
- 5) Which of the service is not part of preventive care?
  - a) Sentinel surveillance
  - b) Nutritional counselling
  - c) Non communicable disease prevention
  - d) OPD prevention



| 6)  | Organization effectiveness comprises <ul><li>a) Productivity power</li><li>b) Adaptability to change</li><li>c) Flexibility in structure and strategy</li><li>d) Rigidity in structure</li></ul> | ·                                                                            |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| 7)  | Concept behind changing the role of all except                                                                                                                                                   | •                                                                            |
|     | <ul><li>a) Rising cost of hospital care</li><li>c) Shortage of hospital bed</li></ul>                                                                                                            | <ul><li>b) Increase of hospital bed</li><li>d) Economic importance</li></ul> |
| 8)  | Which of the following is a basic of cl<br>a) Hospital practice<br>c) Educational purpose                                                                                                        | assification of hospital ? b) Length of stay of patient d) Medical staff     |
| 9)  | Which of the following is a function of a) First aid c) Immediate resuscitation                                                                                                                  | emergency care ? b) Dietary management d) Hospitalization                    |
| 10) | Which of the following facility is not n<br>a) Examination room<br>c) Observation area                                                                                                           | b) Treatment room d) Cafeteria                                               |
| l1) | What are the primary objectives of human hospital services?  a) To motivate the employees b) To create good organization relation c) Co-ordination d) Contribution of services                   |                                                                              |
| 12) | The section performs que body fluids, secretions and substance a) Hematology c) Blood bank                                                                                                       |                                                                              |
| 13) | Gas sterilization is done using a) Ethylene oxide c) Methylene oxide                                                                                                                             | b) Ethylene dioxide<br>d) Steam                                              |
| 14) | is the skeleton of organia) Organizational function c) Decentralization                                                                                                                          | zation. b) Organization structure d) Co-ordination                           |



| Seat |  |
|------|--|
| No.  |  |

# B.E. (Biomedical) (Part – I) (CGPA) Examination, 2018 HOSPITAL MANAGEMENT

Day and Date: Tuesday, 8-5-2018 Marks: 56

Time: 2.30 p.m. to 5.30 p.m.

#### SECTION - I

#### 2. Answer any four questions:

 $(4 \times 3 = 12)$ 

- 1) Write a short note on leadership and motivation.
- 2) Write a short note on CIS and HIS.
- 3) Explain about the planning of individual department.
- 4) Explain about the role of H. R. Management.
- 5) Explain about the planning of administrative service.
- 6) Write a note on Time Management.

#### 3. Answer any two questions:

 $(2 \times 8 = 16)$ 

- 1) Briefly explain about principles of management.
- 2) Explain about the need and responsibilities and function of CEO in hospital.
- 3) Explain about the classification of Hospitals based on various factors and associated norms.

#### SECTION - II

### 4. Answer **any four** questions:

 $(4 \times 3 = 12)$ 

- 1) Explain about the basics of Hospital Budgeting.
- 2) Explain the role of civil engineer.
- 3) Explain about the quality assurance.
- 4) Explain about the dietary (food services).
- 5) Explain about the risk management.
- 6) Explain the importance of pharmacy department in hospital.

# 5. Answer **any two** questions:

 $(2 \times 8 = 16)$ 

- 1) Explain about the economics and financial management in Hospital.
- 2) Explain briefly about ICU departments and explain its categorization.
- 3) Explain the role of electrical and mechanical engineering departments.

| <br> |  |
|------|--|

| Seat |  |
|------|--|
| No.  |  |

Set P

# B.E. (Biomedical Engg.) (Part – II) (New CGPA) Examination, 2018 MEDICAL IMAGING – II

Day and Date: Tuesday, 15-5-2018 Total Marks: 70

Time: 2.30 p.m. to 5.30 p.m.

Instructions: 1) Q. No. 1 is compulsory. It should be solved in first
30 minutes in Answer Book Page No. 3. Each question
carries one mark.

 Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

### MCQ/Objective Type Questions

Duration: 30 Minutes Marks: 14

1. Choose the correct answer:

 $(14 \times 1 = 14)$ 

- 1) The 'filter' in filtered back projection refers to
  - a) Bowtie filter between the beam and patient
  - b) Conversion between attenuation and Hounsfield units
  - c) Conversion between fan-beam and parallel geometry
  - d) Fix for the blurring inherent to back projection
- 2) Dose in CT can be reduced by which of the following parameter adjustments (assuming other factors constant)?
  - a) Increasing kV

b) Increasing mAs

c) Increasing Pitch

- d) Increasing scan length
- 3) Increasing the number of rows in MDCT principally allows for
  - a) Greater spatial resolution

b) Greater temporal resolution

c) Greater axial coverage

- d) Greater contrast resolution
- 4) If a signal is undersampled, aliasing will result and cause
  - a) Amplitude misregistration

b) Frequency misregistration

c) Phase misregistration

- d) Noise
- 5) In MR imaging, matrix size determines

a) Field of view

b) Aliasing

c) Resolution

d) Bandwidth



| 6)  | Protons in different molecules differ in all of the following ways except                                              |       |                                      |
|-----|------------------------------------------------------------------------------------------------------------------------|-------|--------------------------------------|
|     | a) T1                                                                                                                  | b)    | T2                                   |
|     | c) Gyromagnetic ratio                                                                                                  | d)    | Precession frequency                 |
| 7)  | 7) The mathematical technique that involves the estimation of an unknivalue from values on either side of its known as |       |                                      |
|     | a) Filtering                                                                                                           | b)    | Interpolation                        |
|     | c) Convolution                                                                                                         | d)    | Summation                            |
| 8)  | The CT number (Hounsfield unit) of fa                                                                                  | at c  | lepends on                           |
|     | a) kV                                                                                                                  | b)    | mAs                                  |
|     | c) Reconstruction algorithm                                                                                            | d)    | Nothing-it is constant               |
| 9)  | Which of the following is not common                                                                                   | ıly ı | used as a CT scintillation detector? |
|     | a) Ceramic rare earth                                                                                                  | b)    | silver halide                        |
|     | c) Bismuth germinate                                                                                                   | d)    | cadmium tungstate                    |
| 10) | of the following it the prima and tissue during CT examination.                                                        | ary   | interaction between x-ray photons    |
|     | a) Bremsstrahlung effect                                                                                               | b)    | Characteristic effect                |
|     | c) Compton effect                                                                                                      | d)    | Coherent scatter                     |
| 11) | Ring artifacts on the CT image are as tube detector relationship.                                                      | sso   | ciated with of the following         |
|     | a) Rotate-Nutate                                                                                                       | b)    | Rotate-Stationary                    |
|     | c) Rotate-Rotated                                                                                                      | d)    | Translate-Rotate                     |
| 12) | of the following reconstruction CT scanners.                                                                           | tio   | n methods is used by most modern     |
|     | a) Back projection                                                                                                     | b)    | Iterative method                     |
|     | c) Fourier transforms                                                                                                  | d)    | Filtered back projection             |
| 13) | Larmor frequency depends upon the                                                                                      |       |                                      |
|     | a) individual nucleus                                                                                                  |       | magnetic flux density                |
|     | c) both a and b                                                                                                        | d)    | energetic flux unit                  |
| 14) | The process by which electrons are p tube is known as                                                                  |       | •                                    |
|     | a) rectification                                                                                                       | ,     | anode heel effect                    |
|     | c) thermionic emission                                                                                                 | d)    | isotropic emission                   |



| Seat |  |
|------|--|
| No.  |  |

# B.E. (Biomedical Engg.) (Part – II) (New CGPA) Examination, 2018 MEDICAL IMAGING – II

Day and Date: Tuesday, 15-5-2018

Time: 2.30 p.m. to 5.30 p.m.

### 2. Attempt any four:

 $(4 \times 4 = 16)$ 

Marks: 56

 Differentiate between plain CT and spiral CT and explain different types of CT artifacts.

SECTION - I

- 2) Describe various detectors used in CT scanning.
- 3) Draw and explain second and third generations of CT scan.
- 4) State clinical applications of MR spectroscopy.
- 5) Define CT number and state its significance.

### 3. Attempt any two:

 $(2 \times 6 = 12)$ 

- 1) Explain working of chemical shift imaging and water suppression techniques used in MRS.
- 2) Describe different types of pulse sequences used in MRS.
- 3) List various image reconstruction techniques used in CT imaging and explain Fourier reconstruction techniques with one example.

#### SECTION - II

### 4. Attempt any four:

 $(4 \times 4 = 16)$ 

- 1) Explain the working principle of magnetic resonance imaging.
- 2) Define angiography and explain the role of CT in imaging process.

- 3) Explain clinical applications of MRI imaging.
- 4) Describe working of Electrical Impedance Tomography in short.
- 5) Describe various superconducting magnets used in MRI.

### 5. Attempt any two:

 $(2 \times 6 = 12)$ 

- 1) Explain phase and frequency encoding used in MRI with necessary diagrams.
- 2) Define hybrid imaging and its applications. Also explain PET/CT hybrid imaging technique in detail.
- 3) Describe the construction and detectors used in MDCET along with angiography technique.

|--|--|

| Seat |  |
|------|--|
| No.  |  |

Set

t Q

# B.E. (Biomedical Engg.) (Part – II) (New CGPA) Examination, 2018 MEDICAL IMAGING – II

Day and Date: Tuesday, 15-5-2018 Total Marks: 70

Time: 2.30 p.m. to 5.30 p.m.

- Instructions: 1) Q. No. 1 is compulsory. It should be solved in first
  30 minutes in Answer Book Page No. 3. Each question
  carries one mark.
  - 2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

|        | Page.                                                                                  |                                           |
|--------|----------------------------------------------------------------------------------------|-------------------------------------------|
|        | MCQ/Objective                                                                          | Type Questions                            |
| Durati | on : 30 Minutes                                                                        | Marks: 14                                 |
| 1. C   | Choose the correct answer:                                                             | (14×1=14)                                 |
| 1      | ) The CT number (Hounsfield unit) o                                                    | fat depends on                            |
|        | a) kV                                                                                  | b) mAs                                    |
|        | c) Reconstruction algorithm                                                            | d) Nothing-it is constant                 |
| 2      | ) Which of the following is not comme                                                  | only used as a CT scintillation detector? |
|        | a) Ceramic rare earth                                                                  | b) silver halide                          |
|        | c) Bismuth germinate                                                                   | d) cadmium tungstate                      |
| 3      | and tissue during CT examination.                                                      | mary interaction between x-ray photons    |
|        | a) Bremsstrahlung effect                                                               | b) Characteristic effect                  |
|        | c) Compton effect                                                                      | d) Coherent scatter                       |
| 4      | <ul> <li>Ring artifacts on the CT image are<br/>tube detector relationship.</li> </ul> | associated with of the following          |
|        | a) Rotate-Nutate                                                                       | b) Rotate-Stationary                      |
|        | c) Rotate-Rotated                                                                      | d) Translate-Rotate                       |
| 5      | of the following reconstr                                                              | uction methods is used by most modern     |
|        | a) Back projection                                                                     | b) Iterative method                       |
|        | c) Fourier transforms                                                                  | d) Filtered back projection               |
|        |                                                                                        |                                           |



| 6)  | Larmor frequency depends upon the                                                                 |                                                                                         |  |
|-----|---------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--|
|     | a) individual nucleus                                                                             | b) magnetic flux density                                                                |  |
|     | c) both a and b                                                                                   | d) energetic flux unit                                                                  |  |
| 7)  | The process by which electrons are p tube is known as                                             | roduced at the cathode of a CT x-ray                                                    |  |
|     | a) rectification                                                                                  | b) anode heel effect                                                                    |  |
|     | c) thermionic emission                                                                            | d) isotropic emission                                                                   |  |
| 8)  | The 'filter' in filtered back projection r                                                        | efers to                                                                                |  |
|     | a) Bowtie filter between the beam an                                                              | nd patient                                                                              |  |
|     | b) Conversion between attenuation a                                                               | and Hounsfield units                                                                    |  |
|     | c) Conversion between fan-beam an                                                                 | d parallel geometry                                                                     |  |
|     | d) Fix for the blurring inherent to bac                                                           | k projection                                                                            |  |
| 9)  | Dose in CT can be reduced by which o (assuming other factors constant)?                           | f the following parameter adjustments                                                   |  |
|     | a) Increasing kV                                                                                  | b) Increasing mAs                                                                       |  |
|     | c) Increasing Pitch                                                                               | d) Increasing scan length                                                               |  |
| 10) | Increasing the number of rows in MD a) Greater spatial resolution c) Greater axial coverage       | CT principally allows for b) Greater temporal resolution d) Greater contrast resolution |  |
| 11) | If a signal is undersampled, aliasing value a) Amplitude misregistration c) Phase misregistration | will result and cause b) Frequency misregistration d) Noise                             |  |
| 12) | In MR imaging, matrix size determine                                                              | es                                                                                      |  |
|     | a) Field of view                                                                                  | b) Aliasing                                                                             |  |
|     | c) Resolution                                                                                     | d) Bandwidth                                                                            |  |
| 13) | Protons in different molecules differ in                                                          | n all of the following ways except                                                      |  |
|     | a) T1                                                                                             | b) T2                                                                                   |  |
|     | c) Gyromagnetic ratio                                                                             | d) Precession frequency                                                                 |  |
| 14) | The mathematical technique that invalue from values on either side of its                         |                                                                                         |  |
|     | a) Filtering                                                                                      | b) Interpolation                                                                        |  |
|     | c) Convolution                                                                                    | d) Summation                                                                            |  |
|     |                                                                                                   |                                                                                         |  |



| Seat |  |
|------|--|
| No.  |  |

# B.E. (Biomedical Engg.) (Part – II) (New CGPA) Examination, 2018 MEDICAL IMAGING – II

Day and Date: Tuesday, 15-5-2018

Time: 2.30 p.m. to 5.30 p.m.

#### SECTION - I

### 2. Attempt any four:

 $(4 \times 4 = 16)$ 

Marks: 56

- Differentiate between plain CT and spiral CT and explain different types of CT artifacts.
- 2) Describe various detectors used in CT scanning.
- 3) Draw and explain second and third generations of CT scan.
- 4) State clinical applications of MR spectroscopy.
- 5) Define CT number and state its significance.

## 3. Attempt any two:

 $(2 \times 6 = 12)$ 

- 1) Explain working of chemical shift imaging and water suppression techniques used in MRS.
- 2) Describe different types of pulse sequences used in MRS.
- 3) List various image reconstruction techniques used in CT imaging and explain Fourier reconstruction techniques with one example.

#### SECTION - II

## 4. Attempt any four:

 $(4 \times 4 = 16)$ 

- 1) Explain the working principle of magnetic resonance imaging.
- 2) Define angiography and explain the role of CT in imaging process.

- 3) Explain clinical applications of MRI imaging.
- 4) Describe working of Electrical Impedance Tomography in short.
- 5) Describe various superconducting magnets used in MRI.

### 5. Attempt any two:

 $(2 \times 6 = 12)$ 

- 1) Explain phase and frequency encoding used in MRI with necessary diagrams.
- 2) Define hybrid imaging and its applications. Also explain PET/CT hybrid imaging technique in detail.
- 3) Describe the construction and detectors used in MDCET along with angiography technique.

| Seat |  |
|------|--|
| No.  |  |

# B.E. (Biomedical Engg.) (Part – II) (New CGPA) Examination, 2018 MEDICAL IMAGING – II

|                        | MILDIOAL IIII                                                                                            | AGI                | IIVG — II                                                                                                                          |
|------------------------|----------------------------------------------------------------------------------------------------------|--------------------|------------------------------------------------------------------------------------------------------------------------------------|
| •                      | ate : Tuesday, 15-5-2018<br>p.m. to 5.30 p.m.                                                            |                    | Total Marks : 70                                                                                                                   |
| Instr                  | carries <b>one</b> mark.<br>2) <b>Answer MCQ/Object</b>                                                  | ver l              | y. It should be solved in first Book Page No. 3. Each question  type questions on Page No. 3 only. n, Q.P. Set (P/Q/R/S) on Top of |
|                        | MCQ/Objective Ty                                                                                         | уре                | Questions                                                                                                                          |
| Duration: 3            | 30 Minutes                                                                                               |                    | Marks: 14                                                                                                                          |
| 1. Choose              | e the correct answer :                                                                                   |                    | (14×1=14)                                                                                                                          |
| a) F<br>c) F<br>2) Pro | IR imaging, matrix size determine<br>Field of view<br>Resolution<br>tons in different molecules differ i | b)<br>d)<br>in al  |                                                                                                                                    |
| a)                     | Gyromagnetic ratio                                                                                       | ,                  | T2 Precession frequency                                                                                                            |
| 3) The<br>valu<br>a) F | , ,                                                                                                      | volv<br>s kn<br>b) | es the estimation of an unknown                                                                                                    |
| 4) The<br>a) k         | e CT number (Hounsfield unit) of f                                                                       | fat d<br>b)        |                                                                                                                                    |
| a) (                   | ich of the following is not commor<br>Ceramic rare earth<br>Bismuth germinate                            | b)                 | used as a CT scintillation detector? silver halide cadmium tungstate                                                               |

6) \_\_\_\_\_ of the following it the primary interaction between x-ray photons and tissue during CT examination.

b) Characteristic effect

d) Coherent scatter

a) Bremsstrahlung effect

c) Compton effect

| 7)  | Ring artifacts on the CT image are associated with of the following tube detector relationship.                                 |      |                                                  |
|-----|---------------------------------------------------------------------------------------------------------------------------------|------|--------------------------------------------------|
|     | a) Rotate-Nutate                                                                                                                | b)   | Rotate-Stationary                                |
|     | c) Rotate-Rotated                                                                                                               | d)   | Translate-Rotate                                 |
| 8)  | of the following reconstruc CT scanners.                                                                                        | tior | n methods is used by most modern                 |
|     | a) Back projection                                                                                                              | b)   | Iterative method                                 |
|     | c) Fourier transforms                                                                                                           | d)   | Filtered back projection                         |
| 9)  | Larmor frequency depends upon the                                                                                               |      |                                                  |
|     | a) individual nucleus                                                                                                           | ,    | magnetic flux density                            |
|     | c) both a and b                                                                                                                 | d)   | energetic flux unit                              |
| 10) | The process by which electrons are p tube is known as                                                                           | roc  | uced at the cathode of a CT x-ray                |
|     | a) rectification                                                                                                                | •    | anode heel effect                                |
|     | c) thermionic emission                                                                                                          | d)   | isotropic emission                               |
| 11) | The 'filter' in filtered back projection re                                                                                     | efe  | rs to                                            |
|     | a) Bowtie filter between the beam an                                                                                            | d p  | atient                                           |
|     | b) Conversion between attenuation a                                                                                             | ınd  | Hounsfield units                                 |
|     | c) Conversion between fan-beam an                                                                                               | d p  | arallel geometry                                 |
|     | d) Fix for the blurring inherent to back                                                                                        | k p  | rojection                                        |
| 12) | Dose in CT can be reduced by which of (assuming other factors constant)?                                                        | f th | e following parameter adjustments                |
|     | a) Increasing kV                                                                                                                | b)   | Increasing mAs                                   |
|     | c) Increasing Pitch                                                                                                             | d)   | Increasing scan length                           |
| 13) | Increasing the number of rows in MD                                                                                             | СТ   | principally allows for                           |
|     | a) Greater spatial resolution                                                                                                   | ,    | Greater temporal resolution                      |
|     | c) Greater axial coverage                                                                                                       | d)   | Greater contrast resolution                      |
| 14) | <ul><li>If a signal is undersampled, aliasing v</li><li>a) Amplitude misregistration</li><li>c) Phase misregistration</li></ul> | b)   | result and cause Frequency misregistration Noise |



| Seat |  |
|------|--|
| No.  |  |

# B.E. (Biomedical Engg.) (Part – II) (New CGPA) Examination, 2018 MEDICAL IMAGING – II

Day and Date: Tuesday, 15-5-2018

Time: 2.30 p.m. to 5.30 p.m.

SECTION - I

#### 2. Attempt any four:

 $(4 \times 4 = 16)$ 

Marks: 56

- Differentiate between plain CT and spiral CT and explain different types of CT artifacts.
- 2) Describe various detectors used in CT scanning.
- 3) Draw and explain second and third generations of CT scan.
- 4) State clinical applications of MR spectroscopy.
- 5) Define CT number and state its significance.

## 3. Attempt any two:

 $(2 \times 6 = 12)$ 

- 1) Explain working of chemical shift imaging and water suppression techniques used in MRS.
- 2) Describe different types of pulse sequences used in MRS.
- 3) List various image reconstruction techniques used in CT imaging and explain Fourier reconstruction techniques with one example.

#### SECTION - II

### 4. Attempt any four:

 $(4 \times 4 = 16)$ 

- 1) Explain the working principle of magnetic resonance imaging.
- 2) Define angiography and explain the role of CT in imaging process.

- 3) Explain clinical applications of MRI imaging.
- 4) Describe working of Electrical Impedance Tomography in short.
- 5) Describe various superconducting magnets used in MRI.

### 5. Attempt any two:

 $(2 \times 6 = 12)$ 

- 1) Explain phase and frequency encoding used in MRI with necessary diagrams.
- 2) Define hybrid imaging and its applications. Also explain PET/CT hybrid imaging technique in detail.
- 3) Describe the construction and detectors used in MDCET along with angiography technique.

| <br> | <br> | <br> |
|------|------|------|

| Seat |  |
|------|--|
| No.  |  |

Set

S

# B.E. (Biomedical Engg.) (Part – II) (New CGPA) Examination, 2018 MEDICAL IMAGING – II

Day and Date: Tuesday, 15-5-2018 Total Marks: 70

Time: 2.30 p.m. to 5.30 p.m.

- Instructions: 1) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book Page No. 3. Each question carries one mark.
  - 2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

|      | raye.                                                                                  |                                        |
|------|----------------------------------------------------------------------------------------|----------------------------------------|
|      | MCQ/Objective T                                                                        | ype Questions                          |
| Dura | ation : 30 Minutes                                                                     | Marks: 14                              |
| 1.   | Choose the correct answer:                                                             | (14×1=14)                              |
|      | 1) of the following it the prin and tissue during CT examination.                      | nary interaction between x-ray photons |
|      | <ul> <li>a) Bremsstrahlung effect</li> </ul>                                           | b) Characteristic effect               |
|      | c) Compton effect                                                                      | d) Coherent scatter                    |
|      | <ol><li>Ring artifacts on the CT image are a<br/>tube detector relationship.</li></ol> | associated with of the following       |
|      | a) Rotate-Nutate                                                                       | b) Rotate-Stationary                   |
|      | c) Rotate-Rotated                                                                      | d) Translate-Rotate                    |
|      | 3) of the following reconstru                                                          | ction methods is used by most modern   |
|      | <ul><li>a) Back projection</li></ul>                                                   | b) Iterative method                    |
|      | c) Fourier transforms                                                                  | d) Filtered back projection            |
|      | 4) Larmor frequency depends upon the                                                   |                                        |
|      | <ul><li>a) individual nucleus</li></ul>                                                | b) magnetic flux density               |
|      | c) both a and b                                                                        | d) energetic flux unit                 |
|      | 5) The process by which electrons are tube is known as                                 | produced at the cathode of a CT x-ray  |
|      | a) rectification                                                                       | b) anode heel effect                   |
|      | c) thermionic emission                                                                 | d) isotropic emission                  |



| 6)  | The 'filter' in filtered back projection r                                                        | efe   | rs to                                                   |  |
|-----|---------------------------------------------------------------------------------------------------|-------|---------------------------------------------------------|--|
|     | a) Bowtie filter between the beam and patient                                                     |       |                                                         |  |
|     | b) Conversion between attenuation a                                                               | and   | Hounsfield units                                        |  |
|     | c) Conversion between fan-beam an                                                                 | d p   | arallel geometry                                        |  |
|     | d) Fix for the blurring inherent to bac                                                           | k p   | rojection                                               |  |
| 7)  | Dose in CT can be reduced by which o (assuming other factors constant)?                           | of th | e following parameter adjustments                       |  |
|     | a) Increasing kV                                                                                  | b)    | Increasing mAs                                          |  |
|     | c) Increasing Pitch                                                                               | d)    | Increasing scan length                                  |  |
| 8)  | Increasing the number of rows in MD                                                               | СТ    | principally allows for                                  |  |
|     | <ul><li>a) Greater spatial resolution</li><li>c) Greater axial coverage</li></ul>                 | ,     | Greater temporal resolution Greater contrast resolution |  |
| 9)  | If a signal is undersampled, aliasing value a) Amplitude misregistration c) Phase misregistration | b)    | result and cause<br>Frequency misregistration<br>Noise  |  |
| 10) | In MR imaging, matrix size determine                                                              | es    |                                                         |  |
|     | a) Field of view                                                                                  | b)    | Aliasing                                                |  |
|     | c) Resolution                                                                                     | d)    | Bandwidth                                               |  |
| 11) | Protons in different molecules differ in                                                          | n al  | I of the following ways except                          |  |
|     | a) T1                                                                                             | b)    | T2                                                      |  |
|     | c) Gyromagnetic ratio                                                                             | d)    | Precession frequency                                    |  |
| 12) | The mathematical technique that invalue from values on either side of its                         |       |                                                         |  |
|     | a) Filtering                                                                                      | b)    | Interpolation                                           |  |
|     | c) Convolution                                                                                    | d)    | Summation                                               |  |
| 13) | The CT number (Hounsfield unit) of fa                                                             | at c  | lepends on                                              |  |
|     | a) kV                                                                                             | b)    | mAs                                                     |  |
|     | c) Reconstruction algorithm                                                                       | d)    | Nothing-it is constant                                  |  |
| 14) | Which of the following is not common                                                              | າly ເ | used as a CT scintillation detector?                    |  |
|     | a) Ceramic rare earth                                                                             | b)    | silver halide                                           |  |
|     | c) Bismuth germinate                                                                              | d)    | cadmium tungstate                                       |  |



| Seat |  |
|------|--|
| No.  |  |

# B.E. (Biomedical Engg.) (Part – II) (New CGPA) Examination, 2018 MEDICAL IMAGING – II

Day and Date: Tuesday, 15-5-2018

Time: 2.30 p.m. to 5.30 p.m.

#### SECTION - I

### 2. Attempt any four:

 $(4 \times 4 = 16)$ 

Marks: 56

- Differentiate between plain CT and spiral CT and explain different types of CT artifacts.
- 2) Describe various detectors used in CT scanning.
- 3) Draw and explain second and third generations of CT scan.
- 4) State clinical applications of MR spectroscopy.
- 5) Define CT number and state its significance.

## 3. Attempt any two:

 $(2 \times 6 = 12)$ 

- 1) Explain working of chemical shift imaging and water suppression techniques used in MRS.
- 2) Describe different types of pulse sequences used in MRS.
- 3) List various image reconstruction techniques used in CT imaging and explain Fourier reconstruction techniques with one example.

#### SECTION - II

### 4. Attempt any four:

 $(4 \times 4 = 16)$ 

- 1) Explain the working principle of magnetic resonance imaging.
- 2) Define angiography and explain the role of CT in imaging process.

403

3) Explain clinical applications of MRI imaging.

- 4) Describe working of Electrical Impedance Tomography in short.
- 5) Describe various superconducting magnets used in MRI.

### 5. Attempt any two:

 $(2 \times 6 = 12)$ 

- 1) Explain phase and frequency encoding used in MRI with necessary diagrams.
- 2) Define hybrid imaging and its applications. Also explain PET/CT hybrid imaging technique in detail.
- 3) Describe the construction and detectors used in MDCET along with angiography technique.

| Seat |  |
|------|--|
| No.  |  |

Set P

Marks: 14

# B.E. (Part II) (Biomedical Engineering) (New CGPA) Examination, 2018 INSTALLATION, MAINTENANCE AND SERVICING

Day and Date: Thursday, 17-5-2018 Total Marks: 70

Time: 2.30 p.m. to 5.30 p.m.

**Duration: 30 Minutes** 

- Instructions: 1) Q. No. 1 is compulsory. It should be solved in first
  30 minutes in Answer Book Page No. 3. Each question
  carries one mark.
  - 2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

| l. | Choose the correct a                                    | nswer:              |                   |              | (1×14=14) |
|----|---------------------------------------------------------|---------------------|-------------------|--------------|-----------|
|    | 1) Control panel of d                                   | iagnostic X-ray ed  | quipment operatin | g at         | KVP.      |
|    | a) 225                                                  | b) 325              | c) 25             | d) 125       |           |
|    | <ol><li>The entrance doo<br/>movement of beds</li></ol> |                     | n should be       | feet f       | or easy   |
|    | a) 4                                                    | b) 14               | c) 0.4            | d) 40        |           |
|    | 3) Glass electrodes a                                   | are suitable for m  | easurement in the | range of pH  |           |
|    | a) 0 – 110                                              | b) 11 – 100         | c) 0 - 11         | d) None      |           |
|    | 4) The following is no                                  | ot a classification | of maintenance.   |              |           |
|    | <ul> <li>a) Corrective main</li> </ul>                  | ntenance            | b) Timely main    | tenance      |           |
|    | c) Scheduled mai                                        | ntenance            | d) Preventive r   | maintenance  |           |
|    | 5) With increase in p                                   | reventive mainter   | nance cost, break | down mainten | ance cost |
|    | a) Increases                                            |                     | b) Decreases      |              |           |
|    | c) Remain same                                          |                     | d) Any of the a   | bove         |           |
|    |                                                         |                     |                   |              |           |

| 6)  | pH stand for Power of                                                |      |                                   |
|-----|----------------------------------------------------------------------|------|-----------------------------------|
|     | a) H <sup>+</sup> ion concentration                                  | b)   | OH <sup>-</sup> ion concentration |
|     | c) He+ ion concentration                                             | d)   | Power of Hypnotisis               |
| 7)  | On which of the following mass spect                                 | ror  | neter separations ?               |
|     | a) Mass                                                              | b)   | Charge                            |
|     | c) Molecular weight                                                  | d)   | Mass to charge ratio              |
| 8)  | X-ray beam falls are not less than                                   |      | thick brick or equivalent.        |
|     | a) 35 cm b) 23 cm                                                    | c)   | 20 cm d) 11 cm                    |
| 9)  | In ICU, room should be at least the bed.                             |      | with free movable space around    |
|     | a) 120 sq. Feet                                                      | b)   | 120 feet                          |
|     | c) 120 sq. meter                                                     | d)   | 20 sq. feet                       |
| 10) | Clear free area inside operation room                                | ı sh | ould be around                    |
|     | a) 480 - 600 sq. feet                                                | b)   | 480 - 600 feet                    |
|     | c) 500 - 640 sq. feet                                                | d)   | 500 - 640 sq. feet                |
| 11) | are routinely used for and potassium in body.                        | the  | measurement of lithium, sodium    |
|     | a) Spectrophotometer                                                 | b)   | Colorimeter                       |
|     | c) Flame photometer                                                  | d)   | Centrifuge                        |
| 12) | Equipment failure takes place due to                                 | vai  | ious reason are classified as     |
|     | a) Improper choice of components                                     | b)   | Production deficiencies           |
|     | c) Careless storage and transport                                    | d)   | All of the above                  |
| 13) | is defined as the ability of without failure, under stated condition |      |                                   |
|     | a) Reliability                                                       | b)   | Maintenance                       |
|     | c) Trouble shooting                                                  | d)   | Servicing                         |
| 14) | Spirometer is used to measure                                        |      |                                   |
|     | a) Lung capacity                                                     | b)   | Lung passage                      |
|     | c) Lung weight                                                       | d)   | Air                               |
|     |                                                                      |      |                                   |



| Seat |  |
|------|--|
| No.  |  |

# B.E. (Part II) (Biomedical Engineering) (New CGPA) Examination, 2018 INSTALLATION, MAINTENANCE AND SERVICING

Day and Date: Thursday, 17-5-2018

Marks: 56

Time: 2.30 p.m. to 5.30 p.m.

**Instructions**: 1) **All** the questions are **compulsory**.

2) Figures to the right indicate full marks.

#### SECTION - I

#### II. Answer any four:

 $(4 \times 4 = 16)$ 

- 1) What are troubleshooting techniques explain with respective
  - i) Functional area approach
- ii) Split half method.
- 2) Explain in detail benefits and scopes of medical equipment's insurance.
- 3) Explain maintenance policy regarding to biomedical instrumentation.
- 4) Explain the installation procedure of defibrillator.
- 5) Enumerate steps for fault finding.

## III. Answer any two:

 $(2 \times 6 = 12)$ 

- 1) Give the pre installation techniques of the X ray machine.
- 2) Discuss importance and role of biomedical engg. in the hospital.
- 3) List and explain precautions of equipment's before installation.

#### SECTION - II

## IV. Answer any four:

 $(4 \times 4 = 16)$ 

- 1) Write a short note on ISO, NABH certification.
- 2) Differentiate between CMC and AMC in detail.
- 3) Draw fault finding tree of short wave diathermy.
- 4) Explain in detail performance test and calibration of auto analyzer.
- 5) Explain the rules of installations that has been applied while installing radiology equipment in radiology department.

Set P

 $(2 \times 6 = 12)$ 

V. Answer any two:

- 1) Explain installation and maintenance procedure for
  - i) Colorimeter

- ii) X-ray machine.
- 2) Explain troubleshooting and fault analytical equipment's.
- 3) Draw the curve for max. Permissible leakage current through the heart vs frequency and explain it.

\_\_\_\_

|--|--|--|--|--|

| Seat |  |
|------|--|
| No.  |  |

## B.E. (Part II) (Biomedical Engineering) (New CGPA) Examination, 2018 INSTALLATION, MAINTENANCE AND SERVICING

Day and Date: Thursday, 17-5-2018 Total Marks: 70

Time: 2.30 p.m. to 5.30 p.m.

- Instructions: 1) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book Page No. 3. Each guestion carries one mark.
  - 2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

| Dur | atio                                     | on : 30 Minutes                               |      | Marks: 14                        |
|-----|------------------------------------------|-----------------------------------------------|------|----------------------------------|
| I.  | Ch                                       | noose the correct answer :                    |      | (1×14=14)                        |
|     | 1) X-ray beam falls are not less than    |                                               |      | thick brick or equivalent.       |
|     |                                          | a) 35 cm b) 23 cm                             | c)   | ) 20 cm d) 11 cm                 |
|     | 2)                                       | In ICU, room should be at least<br>the bed.   |      | with free movable space around   |
|     |                                          | a) 120 sq. Feet                               | b)   | ) 120 feet                       |
|     |                                          | c) 120 sq. meter                              | d)   | ) 20 sq. feet                    |
|     | 3) Clear free area inside operation room |                                               | ı sh | should be around                 |
|     |                                          | a) 480 - 600 sq. feet                         | b)   | ) 480 – 600 feet                 |
|     |                                          | c) 500 - 640 sq. feet                         | d)   | ) 500 – 640 sq. feet             |
|     | 4)                                       | are routinely used for and potassium in body. | the  | e measurement of lithium, sodium |
|     |                                          | a) Spectrophotometer                          | b)   | ) Colorimeter                    |
|     |                                          | c) Flame photometer                           | d)   | ) Centrifuge                     |
|     | 5)                                       | Equipment failure takes place due to          | vai  | arious reason are classified as  |
|     |                                          | a) Improper choice of components              | b)   | ) Production deficiencies        |
|     |                                          | c) Careless storage and transport             | d)   | ) All of the above               |

| 6)         | is defined as the ability of an item to perform a required function without failure, under stated condition for a specified period of time. |                     |     |                           |              |              |         |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-----|---------------------------|--------------|--------------|---------|
|            |                                                                                                                                             | er stated condition |     |                           | 3110         | od of tille. |         |
|            | a) Reliability                                                                                                                              |                     | ,   | Maintenance               |              |              |         |
| <b>→</b> \ | c) Trouble shooting                                                                                                                         |                     | u)  | Servicing                 |              |              |         |
| 7)         | Spirometer is used to                                                                                                                       | to measure          |     |                           |              |              |         |
|            | a) Lung capacity                                                                                                                            |                     | •   | Lung passage              | <del>)</del> |              |         |
|            | c) Lung weight                                                                                                                              |                     | ,   | Air                       |              |              |         |
| 8)         | Control panel of dia                                                                                                                        | gnostic X-ray equ   |     |                           | at .         |              | _ KVP.  |
|            | a) 225                                                                                                                                      | b) 325              | c)  | 25                        |              | d) 125       |         |
| 9)         | The entrance door movement of beds.                                                                                                         | of the ICU room     | sh  | ould be                   |              | feet for     | easy    |
|            | a) 4                                                                                                                                        | b) 14               | c)  | 0.4                       | d)           | 40           |         |
| 10)        | Glass electrodes are                                                                                                                        | e suitable for mea  | su  | rement in the r           | an           | ge of pH     |         |
|            | a) 0 – 110                                                                                                                                  | b) 11 – 100         | c)  | 0 – 11                    | d)           | None         |         |
| 11)        | The following is not                                                                                                                        | a classification of | m   | aintenance.               |              |              |         |
|            | a) Corrective maint                                                                                                                         | enance              | b)  | Timely mainte             | na           | nce          |         |
|            | c) Scheduled maint                                                                                                                          | tenance             | d)  | Preventive ma             | aint         | tenance      |         |
| 12)        | With increase in pre                                                                                                                        | ventive maintena    | nce | e cost, breakdo           | wr           | n maintenan  | ce cost |
|            | a) Increases                                                                                                                                |                     | b)  | Decreases                 |              |              |         |
|            | c) Remain same                                                                                                                              |                     | d)  | Any of the abo            | ove          | )            |         |
| 13)        | pH stand for Power                                                                                                                          | of                  |     |                           |              |              |         |
|            | a) H <sup>+</sup> ion concentra                                                                                                             | tion                | b)  | OH <sup>-</sup> ion conce | enti         | ration       |         |
|            | c) He+ ion concentr                                                                                                                         | ation               | d)  | Power of Hyp              | not          | isis         |         |
| 14)        | On which of the follo                                                                                                                       | owing mass spect    | ror | neter separatio           | ns           | ?            |         |
|            | a) Mass                                                                                                                                     |                     | b)  | Charge                    |              |              |         |
|            | c) Molecular weight                                                                                                                         | t                   | d)  | Mass to charg             | ge r         | ratio        |         |
|            |                                                                                                                                             |                     |     |                           |              |              |         |



| Seat |  |
|------|--|
| No.  |  |

# B.E. (Part II) (Biomedical Engineering) (New CGPA) Examination, 2018 INSTALLATION, MAINTENANCE AND SERVICING

Day and Date: Thursday, 17-5-2018

Marks: 56

Time: 2.30 p.m. to 5.30 p.m.

**Instructions**: 1) **All** the questions are **compulsory**.

2) Figures to the right indicate full marks.

#### SECTION - I

### II. Answer any four:

 $(4 \times 4 = 16)$ 

- 1) What are troubleshooting techniques explain with respective
  - i) Functional area approach
- ii) Split half method.
- 2) Explain in detail benefits and scopes of medical equipment's insurance.
- 3) Explain maintenance policy regarding to biomedical instrumentation.
- 4) Explain the installation procedure of defibrillator.
- 5) Enumerate steps for fault finding.

## III. Answer any two:

 $(2 \times 6 = 12)$ 

- 1) Give the pre installation techniques of the X ray machine.
- 2) Discuss importance and role of biomedical engg. in the hospital.
- 3) List and explain precautions of equipment's before installation.

#### SECTION - II

## IV. Answer any four:

 $(4 \times 4 = 16)$ 

- 1) Write a short note on ISO, NABH certification.
- 2) Differentiate between CMC and AMC in detail.
- 3) Draw fault finding tree of short wave diathermy.
- 4) Explain in detail performance test and calibration of auto analyzer.
- 5) Explain the rules of installations that has been applied while installing radiology equipment in radiology department.

Set Q

 $(2 \times 6 = 12)$ 

V. Answer any two:

- 1) Explain installation and maintenance procedure for
  - i) Colorimeter

- ii) X-ray machine.
- 2) Explain troubleshooting and fault analytical equipment's.
- 3) Draw the curve for max. Permissible leakage current through the heart vs frequency and explain it.

| Seat |  |
|------|--|
| No.  |  |

Set R

# B.E. (Part II) (Biomedical Engineering) (New CGPA) Examination, 2018 INSTALLATION, MAINTENANCE AND SERVICING

Day and Date: Thursday, 17-5-2018 Total Marks: 70

Time: 2.30 p.m. to 5.30 p.m.

- Instructions: 1) Q. No. 1 is compulsory. It should be solved in first
  30 minutes in Answer Book Page No. 3. Each question
  carries one mark.
  - 2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

| Du | ration: 30 Minutes                                           | Marks: 14                                    |
|----|--------------------------------------------------------------|----------------------------------------------|
| l. | Choose the correct answer :                                  | (1×14=14)                                    |
|    | 1) With increase in preventive                               | naintenance cost, breakdown maintenance cost |
|    | a) Increases                                                 | b) Decreases                                 |
|    | c) Remain same                                               | d) Any of the above                          |
|    | 2) pH stand for Power of                                     |                                              |
|    | a) H <sup>+</sup> ion concentration                          | b) OH <sup>-</sup> ion concentration         |
|    | c) He+ ion concentration                                     | d) Power of Hypnotisis                       |
|    | 3) On which of the following n                               | ss spectrometer separations ?                |
|    | a) Mass                                                      | b) Charge                                    |
|    | c) Molecular weight                                          | d) Mass to charge ratio                      |
|    | 4) X-ray beam falls are not les                              | than thick brick or equivalent.              |
|    | a) 35 cm b) 23 cm                                            | n c) 20 cm d) 11 cm                          |
|    | <ol><li>In ICU, room should be at leather the bed.</li></ol> | t with free movable space around             |
|    | a) 120 sq. Feet                                              | b) 120 feet                                  |
|    | c) 120 sq. meter                                             | d) 20 sq. feet                               |

| 6)  | Clear free area inside operation room should be around |                                  |                                             |                       |                  |                  |       |
|-----|--------------------------------------------------------|----------------------------------|---------------------------------------------|-----------------------|------------------|------------------|-------|
|     | a)                                                     | 480 - 600  sq. fee               | et                                          | b)                    | 480 – 600 fee    | t                |       |
|     | c)                                                     | 500 - 640  sq. fee               | et                                          | d)                    | 500 - 640  sq.   | feet             |       |
| 7)  |                                                        | are red depotassium in bo        | outinely used for ody.                      | the                   | measuremen       | t of lithium, so | dium  |
|     | a)                                                     | Spectrophotome                   | ter                                         | b)                    | Colorimeter      |                  |       |
|     | c)                                                     | Flame photomete                  | er                                          | d)                    | Centrifuge       |                  |       |
| 8)  | Εq                                                     | uipment failure ta               | kes place due to                            | vai                   | rious reason a   | re classified as |       |
|     | a)                                                     | Improper choice                  | of components                               | b)                    | Production de    | eficiencies      |       |
|     | c)                                                     | Careless storage                 | and transport                               | d)                    | All of the above | ve               |       |
| 9)  |                                                        |                                  | ed as the ability of<br>er stated conditior |                       |                  |                  | ction |
|     | a)                                                     | Reliability                      |                                             | b)                    | Maintenance      |                  |       |
|     | c)                                                     | Trouble shooting                 |                                             | d)                    | Servicing        |                  |       |
| 10) | Sp                                                     | irometer is used                 | to measure                                  |                       |                  |                  |       |
|     | a)                                                     | Lung capacity                    |                                             | b)                    | Lung passage     | 9                |       |
|     | c)                                                     | Lung weight                      |                                             | d)                    | Air              |                  |       |
| 11) | Со                                                     | ntrol panel of dia               | gnostic X-ray equ                           | ipn                   | nent operating   | at               | _KVP. |
|     | a)                                                     | 225                              | b) 325                                      | c)                    | 25               | d) 125           |       |
| 12) |                                                        | e entrance door ovement of beds. | of the ICU room                             | sh                    | ould be          | feet for         | easy  |
|     | a)                                                     | 4                                | b) 14                                       | c)                    | 0.4              | d) 40            |       |
| 13) | Gla                                                    | ass electrodes ar                | e suitable for mea                          | เรน                   | rement in the r  | ange of pH       |       |
|     | a)                                                     | 0 – 110                          | b) 11 – 100                                 | c)                    | 0 – 11           | d) None          |       |
| 14) | Th                                                     | e following is not               | a classification of                         | m                     | aintenance.      |                  |       |
|     | a)                                                     | Corrective maint                 | enance                                      | b) Timely maintenance |                  |                  |       |
|     | c)                                                     | Scheduled maint                  | enance                                      | d)                    | Preventive ma    | aintenance       |       |
|     |                                                        |                                  |                                             |                       |                  |                  |       |



| Seat |  |
|------|--|
| No.  |  |

# B.E. (Part II) (Biomedical Engineering) (New CGPA) Examination, 2018 INSTALLATION, MAINTENANCE AND SERVICING

Day and Date: Thursday, 17-5-2018

Marks: 56

Time: 2.30 p.m. to 5.30 p.m.

**Instructions**: 1) **All** the questions are **compulsory**.

2) Figures to the right indicate full marks.

#### SECTION - I

### II. Answer any four:

 $(4 \times 4 = 16)$ 

- 1) What are troubleshooting techniques explain with respective
  - i) Functional area approach
- ii) Split half method.
- 2) Explain in detail benefits and scopes of medical equipment's insurance.
- 3) Explain maintenance policy regarding to biomedical instrumentation.
- 4) Explain the installation procedure of defibrillator.
- 5) Enumerate steps for fault finding.

## III. Answer any two:

 $(2 \times 6 = 12)$ 

- 1) Give the pre installation techniques of the X ray machine.
- 2) Discuss importance and role of biomedical engg. in the hospital.
- 3) List and explain precautions of equipment's before installation.

#### SECTION - II

## IV. Answer any four:

 $(4 \times 4 = 16)$ 

- 1) Write a short note on ISO, NABH certification.
- 2) Differentiate between CMC and AMC in detail.
- 3) Draw fault finding tree of short wave diathermy.
- 4) Explain in detail performance test and calibration of auto analyzer.
- 5) Explain the rules of installations that has been applied while installing radiology equipment in radiology department.

Set R

 $(2 \times 6 = 12)$ 

V. Answer **any two**:

- 1) Explain installation and maintenance procedure for
  - i) Colorimeter

- ii) X-ray machine.
- 2) Explain troubleshooting and fault analytical equipment's.
- 3) Draw the curve for max. Permissible leakage current through the heart vs frequency and explain it.

\_\_\_\_

| SLR-T | C | _ | 466 |  |
|-------|---|---|-----|--|
|       | _ | _ |     |  |

| Seat |  |
|------|--|
| No.  |  |

# B.E. (Part II) (Biomedical Engineering) (New CGPA) Examination, 2018 INSTALLATION, MAINTENANCE AND SERVICING

Day and Date: Thursday, 17-5-2018 Total Marks: 70

Time: 2.30 p.m. to 5.30 p.m.

Instructions: 1) Q. No. 1 is compulsory. It should be solved in first
30 minutes in Answer Book Page No. 3. Each question
carries one mark.

2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

## MCQ/Objective Type Questions

**Duration: 30 Minutes** Marks: 14  $(1 \times 14 = 14)$ Choose the correct answer: 1) Clear free area inside operation room should be around a) 480 – 600 sq. feet b) 480 – 600 feet c) 500 – 640 sq. feet d) 500 - 640 sq. feet 2) \_\_\_\_\_ are routinely used for the measurement of lithium, sodium and potassium in body. a) Spectrophotometer b) Colorimeter c) Flame photometer d) Centrifuge 3) Equipment failure takes place due to various reason are classified as a) Improper choice of components b) Production deficiencies c) Careless storage and transport d) All of the above is defined as the ability of an item to perform a required function without failure, under stated condition for a specified period of time. b) Maintenance a) Reliability c) Trouble shooting d) Servicing

| 5)  | Spirometer is used                  | to measure          |      |                 |       |             |          |  |
|-----|-------------------------------------|---------------------|------|-----------------|-------|-------------|----------|--|
|     | a) Lung capacity                    |                     | b)   | Lung passage    | Э     |             |          |  |
|     | c) Lung weight                      |                     | d)   | Air             |       |             |          |  |
| 6)  | Control panel of dia                | gnostic X-ray equ   | ıipn | nent operating  | at _  |             | _ KVP.   |  |
|     | a) 225                              | b) 325              | c)   | 25              | (     | d) 125      |          |  |
| 7)  | The entrance door movement of beds. | of the ICU room     | sh   | ould be         |       | _ feet for  | easy     |  |
|     | a) 4                                | b) 14               | c)   | 0.4             | d) 4  | 40          |          |  |
| 8)  | Glass electrodes ar                 | e suitable for mea  | asu  | rement in the r | ang   | e of pH     |          |  |
|     | a) 0 – 110                          | b) 11 – 100         | c)   | 0 – 11          | d)    | None        |          |  |
| 9)  | The following is not                | a classification of | f ma | aintenance.     |       |             |          |  |
|     | a) Corrective maint                 | enance              | b)   | Timely mainte   | enar  | nce         |          |  |
|     | c) Scheduled main                   | tenance             | d)   | Preventive ma   | ainte | enance      |          |  |
| 10) | With increase in pre                | eventive maintena   | nce  | e cost, breakdo | own   | maintenar   | nce cost |  |
|     | a) Increases                        |                     | b)   | Decreases       |       |             |          |  |
|     | c) Remain same                      |                     | d)   | Any of the ab   | ove   |             |          |  |
| 11) | pH stand for Power                  | of                  |      |                 |       |             |          |  |
|     | a) H <sup>+</sup> ion concentra     | tion                | b)   | OH- ion conce   | entra | ation       |          |  |
|     | c) He+ ion concentr                 | ration              | d)   | Power of Hyp    | noti  | sis         |          |  |
| 12) | On which of the follo               | owing mass spec     | tror | neter separatio | ons   | ?           |          |  |
|     | a) Mass                             |                     |      | b) Charge       |       |             |          |  |
|     | c) Molecular weigh                  | t                   | d)   | Mass to charg   | ge ra | atio        |          |  |
| 13) | X-ray beam falls are                | e not less than     |      | thick b         | rick  | or equivale | ent.     |  |
|     | a) 35 cm                            | b) 23 cm            | c)   | 20 cm           | d)    | 11 cm       |          |  |
| 14) | In ICU, room should the bed.        | be at least         | -    | with free mo    | vab   | le space ar | round    |  |
|     | a) 120 sq. Feet                     |                     | b)   | 120 feet        |       |             |          |  |
|     | c) 120 sq. meter                    |                     | d)   | 20 sq. feet     |       |             |          |  |
|     |                                     |                     |      |                 |       |             |          |  |



| Seat |  |
|------|--|
| No.  |  |

# B.E. (Part II) (Biomedical Engineering) (New CGPA) Examination, 2018 INSTALLATION, MAINTENANCE AND SERVICING

Day and Date: Thursday, 17-5-2018

Marks: 56

Time: 2.30 p.m. to 5.30 p.m.

**Instructions**: 1) **All** the questions are **compulsory**.

2) Figures to the right indicate full marks.

#### SECTION - I

### II. Answer any four:

 $(4 \times 4 = 16)$ 

- 1) What are troubleshooting techniques explain with respective
  - i) Functional area approach
- ii) Split half method.
- 2) Explain in detail benefits and scopes of medical equipment's insurance.
- 3) Explain maintenance policy regarding to biomedical instrumentation.
- 4) Explain the installation procedure of defibrillator.
- 5) Enumerate steps for fault finding.

## III. Answer any two:

 $(2 \times 6 = 12)$ 

- 1) Give the pre installation techniques of the X ray machine.
- 2) Discuss importance and role of biomedical engg. in the hospital.
- 3) List and explain precautions of equipment's before installation.

#### SECTION - II

## IV. Answer any four:

 $(4 \times 4 = 16)$ 

- 1) Write a short note on ISO, NABH certification.
- 2) Differentiate between CMC and AMC in detail.
- 3) Draw fault finding tree of short wave diathermy.
- 4) Explain in detail performance test and calibration of auto analyzer.
- 5) Explain the rules of installations that has been applied while installing radiology equipment in radiology department.

Set S

 $(2 \times 6 = 12)$ 

V. Answer any two:

- 1) Explain installation and maintenance procedure for
  - i) Colorimeter

- ii) X-ray machine.
- 2) Explain troubleshooting and fault analytical equipment's.
- 3) Draw the curve for max. Permissible leakage current through the heart vs frequency and explain it.

|--|--|--|--|--|

| Seat |  |
|------|--|
| No.  |  |

Set P

# B.E. (Part – II) (Biomedical Engg.) (New CGPA) Examination, 2018 BIOMEDICAL MICROSYSTEM

Day and Date: Saturday, 19-5-2018 Total Marks: 70

Time: 2.30 p.m. to 5.30 p.m.

- Instructions: 1) Q. No. 1 is compulsory. It should be solved in first
  30 minutes in Answer Book Page No. 3. Each question
  carries one mark.
  - 2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

| Dur | atio | n : 30 Minutes              |                     |                   |               | Marks: 14 |  |  |
|-----|------|-----------------------------|---------------------|-------------------|---------------|-----------|--|--|
| 1.  | Ch   | Choose the correct answer : |                     |                   |               |           |  |  |
|     | 1)   | tech                        | nology is used fo   | r micro array mar | nufacturing.  |           |  |  |
|     |      | a) photolithograph          | у                   | b) inkjetting     |               |           |  |  |
|     |      | c) contact printing         |                     | d) all above      |               |           |  |  |
|     | 2)   | Microbiosensors a           |                     |                   |               |           |  |  |
|     |      | a) ions effect              |                     |                   |               |           |  |  |
|     |      | b) ion sensitive fie        | ld effect transisto | r                 |               |           |  |  |
|     |      | c) pieroelectric eff        | ect                 |                   |               |           |  |  |
|     |      | d) magnetic effect          |                     |                   |               |           |  |  |
|     | 3)   | Microarrays are als         | so known as         |                   |               |           |  |  |
|     |      | a) bio chips                | b) DNA chips        | c) gene chips     | d) all of the | em        |  |  |
|     | 4)   | One of the applica          | tion of Bulk micro  | machining is      | se            | ensor.    |  |  |
|     |      | a) SAW sensor               | b) Resonant         | c) Pressure       | d) Temper     | ature     |  |  |
|     | 5)   | is a                        | a material remova   | Il method.        |               |           |  |  |
|     |      | a) surface microm           | achining            | b) LIGA           |               |           |  |  |
|     |      | c) micro stereo lith        | nography            | d) none of abou   | ve            |           |  |  |

| 6)  | Combination of                                              | is used to | form sharp poi    | nts.                |
|-----|-------------------------------------------------------------|------------|-------------------|---------------------|
|     | a) dry and isotropic wet etchin                             | g b)       | dry and an isot   | tropic wet etching. |
|     | c) a) and b)                                                | d)         | none of above     |                     |
| 7)  | Focused ion beam milling is                                 |            | process.          |                     |
|     | a) an isotropic                                             | b)         | wet isotropic     |                     |
|     | c) electrochemical                                          | d)         | X-ray lithograp   | hy                  |
| 8)  | Most microproducts available t                              | oday are   |                   |                     |
|     | a) microactuators                                           | b)         | microsensors      |                     |
|     | c) pumps                                                    | d)         | microoptics       |                     |
| 9)  | can be measure                                              | d by MEM   | 1S.               |                     |
|     | a) relative humidity                                        | b)         | Barometric pre    | essure              |
|     | c) aviation                                                 | d)         | all above         |                     |
| 10) | The advantages of microneedl                                | es used ir | n drug delivery i | s                   |
|     | a) painters                                                 |            |                   |                     |
|     | b) does'nt reach to nerve                                   |            |                   |                     |
|     | c) eliminates vibration of the h                            | and        |                   |                     |
|     | d) both a) and b)                                           |            |                   |                     |
| 11) | MEMS devices are within the r                               | ange       |                   |                     |
|     | a) 1 pm – 1nm                                               | b)         | 1 nm – 1 μm       |                     |
|     | c) 1 μm – 1mm                                               | d)         | 1mm – 1 cm        |                     |
| 12) | X-ray lithography is a process remove parts of              |            | ectronic industr  | y to selectively    |
|     | a) thick film                                               | b)         | thin film         |                     |
|     | c) resistive layer                                          | d)         | conductive lay    | er                  |
| 13) | Chemical deposition technique in which stream of source gas |            |                   |                     |
|     | a) reaction b) vapour                                       | c)         | gas               | d) liquid           |
| 14) | The most common material for                                | microma    | chining is        |                     |
|     | a) silicon b) germer                                        | nium c)    | copper            | d) silicon oxide    |
|     |                                                             |            |                   |                     |



| Seat |  |
|------|--|
| No.  |  |

# B.E. (Part – II) (Biomedical Engg.) (New CGPA) Examination, 2018 BIOMEDICAL MICROSYSTEM

Day and Date: Saturday, 19-5-2018

Time: 2.30 p.m. to 5.30 p.m.

SECTION - I

2. Attempt any four questions:

 $(4 \times 4 = 16)$ 

Marks: 56

- 1) Give properties and applications of poly silicon and silicon dioxide.
- 2) Define and differentiate between surface and bulk micromachining.
- 3) Describe levels of MEMS packaging.
- 4) Discuss with a neat diagram RIE technique.
- 5) Describe process of micro contact printing in detail.

3. Attempt any 2 questions:

 $(6 \times 2 = 12)$ 

- 1) Define PVD and discuss two types in detail.
- 2) Discuss with neat diagrams the process steps of photolithography.
- 3) Write a short note on:
  - a) LIGA process steps
  - b) APCVD.

SECTION - II

4. Attempt any four questions:

 $(4 \times 4 = 16)$ 

- 1) Classify micropumps and explain any two types in detail.
- 2) Describe the concept of drug delivery vehicles.
- 3) Discuss various flow techniques used in  $\mu$ -TAS.
- 4) Describe construction and working of Amperometric biosensor.
- 5) Explain scaling in fluid mechanics and electricity.



5. Attempt any two questions:

 $(6 \times 2 = 12)$ 

- 1) Classify biosensor based on detection techniques. Discuss any one type in detail. Explain immobilization technique is short.
- 2) Discuss fabrication of any one type of microneedle in detail.
- 3) Write a short note on:
  - a) Various microsurgical tools
  - b) PCR and genetic screening.

| <br> | <br> |
|------|------|

|             | _   |   |
|-------------|-----|---|
| Seat<br>No. | Set | Q |
|             | J I |   |

# B.E. (Part – II) (Biomedical Engg.) (New CGPA) Examination, 2018 BIOMEDICAL MICROSYSTEM

Day and Date: Saturday, 19-5-2018 Total Marks: 70

Time: 2.30 p.m. to 5.30 p.m.

- Instructions: 1) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book Page No. 3. Each question carries one mark.
  - 2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

| Dur | ration : 20 Minutos                |                            | Marka : 14 |
|-----|------------------------------------|----------------------------|------------|
| Dui | ration: 30 Minutes                 |                            | Marks: 14  |
| 1.  | Choose the correct answer:         |                            | (14×1=14)  |
|     | 1) Most microproducts available to | day are                    |            |
|     | a) microactuators                  | b) microsensors            |            |
|     | c) pumps                           | d) microoptics             |            |
|     | 2) can be measured                 | I by MEMS.                 |            |
|     | a) relative humidity               | b) Barometric pressure     |            |
|     | c) aviation                        | d) all above               |            |
|     | 3) The advantages of microneedle   | s used in drug delivery is |            |
|     | a) painters                        |                            |            |
|     | b) does'nt reach to nerve          |                            |            |
|     | c) eliminates vibration of the ha  | ınd                        |            |
|     | d) both a) and b)                  |                            |            |
|     | 4) MEMS devices are within the ra  | inge                       |            |
|     | a) 1 pm – 1nm                      | b) 1 nm – 1 μm             |            |
|     | c) 1 µm – 1mm                      | d) 1mm – 1 cm              |            |

| 5)  | X-ray lithography is a process used in electronic industry to selectively remove parts of |                     |      |                |          |              |
|-----|-------------------------------------------------------------------------------------------|---------------------|------|----------------|----------|--------------|
|     | a) thick film                                                                             |                     | b)   | thin film      |          |              |
|     | c) resistive layer                                                                        |                     | d)   | conductive la  | yer      |              |
| 6)  | Chemical deposition in which stream of                                                    |                     |      |                |          | _ deposition |
|     | a) reaction                                                                               | b) vapour           | c)   | gas            | d) liqu  | uid          |
| 7)  | The most common                                                                           | material for micro  | ma   | chining is     |          |              |
|     | a) silicon                                                                                | b) germenium        | c)   | copper         | d) sili  | con oxide    |
| 8)  | tech                                                                                      | nology is used for  | mi   | cro array man  | ufacturi | ng.          |
|     | a) photolithography                                                                       | У                   | b)   | inkjetting     |          |              |
|     | c) contact printing                                                                       |                     | d)   | all above      |          |              |
| 9)  | Microbiosensors ar                                                                        | e based on          |      |                |          |              |
|     | a) ions effect                                                                            |                     |      |                |          |              |
|     | b) ion sensitive fiel                                                                     | d effect transistor | •    |                |          |              |
|     | c) pieroelectric effe                                                                     | ect                 |      |                |          |              |
|     | d) magnetic effect                                                                        |                     |      |                |          |              |
| 10) | Microarrays are als                                                                       | o known as          |      |                |          |              |
|     | a) bio chips                                                                              | b) DNA chips        | c)   | gene chips     | d) all   | of them      |
| 11) | One of the applicat                                                                       | ion of Bulk micror  | nac  | hining is      |          | _ sensor.    |
|     | a) SAW sensor                                                                             | b) Resonant         | c)   | Pressure       | d) Tei   | mperature    |
| 12) |                                                                                           |                     |      |                |          |              |
|     | a) surface microma                                                                        | achining            | b)   | LIGA           |          |              |
|     | c) micro stereo lith                                                                      | ography             | d)   | none of abov   | е        |              |
| 13) | Combination of                                                                            | is use              | d to | form sharp po  | oints.   |              |
|     | a) dry and isotropic                                                                      | c wet etching       | b)   | dry and an is  | otropic  | wet etching. |
|     | c) a) and b)                                                                              |                     | d)   | none of abov   | е        |              |
| 14) | Focused ion beam                                                                          | milling is          |      | process.       |          |              |
|     | a) an isotropic                                                                           |                     | b)   | wet isotropic  |          |              |
|     | c) electrochemical                                                                        |                     | d)   | X-ray lithogra | ıphy     |              |
|     |                                                                                           |                     |      |                |          |              |



| Seat |  |
|------|--|
| No.  |  |

# B.E. (Part – II) (Biomedical Engg.) (New CGPA) Examination, 2018 BIOMEDICAL MICROSYSTEM

Day and Date: Saturday, 19-5-2018

Time: 2.30 p.m. to 5.30 p.m.

Marks: 56

#### SECTION - I

### 2. Attempt any four questions:

 $(4 \times 4 = 16)$ 

- 1) Give properties and applications of poly silicon and silicon dioxide.
- 2) Define and differentiate between surface and bulk micromachining.
- 3) Describe levels of MEMS packaging.
- 4) Discuss with a neat diagram RIE technique.
- 5) Describe process of micro contact printing in detail.

### 3. Attempt any 2 questions:

 $(6 \times 2 = 12)$ 

- 1) Define PVD and discuss two types in detail.
- 2) Discuss with neat diagrams the process steps of photolithography.
- 3) Write a short note on:
  - a) LIGA process steps
  - b) APCVD.

#### SECTION - II

## 4. Attempt any four questions:

 $(4 \times 4 = 16)$ 

- 1) Classify micropumps and explain any two types in detail.
- 2) Describe the concept of drug delivery vehicles.
- 3) Discuss various flow techniques used in  $\mu$ -TAS.
- 4) Describe construction and working of Amperometric biosensor.
- 5) Explain scaling in fluid mechanics and electricity.



5. Attempt any two questions:

 $(6 \times 2 = 12)$ 

- 1) Classify biosensor based on detection techniques. Discuss any one type in detail. Explain immobilization technique is short.
- 2) Discuss fabrication of any one type of microneedle in detail.
- 3) Write a short note on:
  - a) Various microsurgical tools
  - b) PCR and genetic screening.

|   |   |    |   |  | Ш |  |
|---|---|----|---|--|---|--|
| Ш | Ш | шш | Ш |  |   |  |

| Seat |  |
|------|--|
| No.  |  |

Set R

# B.E. (Part – II) (Biomedical Engg.) (New CGPA) Examination, 2018 BIOMEDICAL MICROSYSTEM

Day and Date: Saturday, 19-5-2018 Total Marks: 70

Time: 2.30 p.m. to 5.30 p.m.

- Instructions: 1) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book Page No. 3. Each question carries one mark.
  - 2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

| ur | atior | n : 30 Minutes                       |                               | Marks: 14 |
|----|-------|--------------------------------------|-------------------------------|-----------|
| 1. | Ch    | oose the correct answer :            |                               | (14×1=14) |
|    | 1)    | is a material removal                | method.                       |           |
|    |       | a) surface micromachining            | b) LIGA                       |           |
|    |       | c) micro stereo lithography          | d) none of above              |           |
|    | 2)    | Combination of is used               | d to form sharp points.       |           |
|    |       | a) dry and isotropic wet etching     | b) dry and an isotropic wet e | tching.   |
|    |       | c) a) and b)                         | d) none of above              |           |
|    | 3)    | Focused ion beam milling is          | process.                      |           |
|    |       | a) an isotropic                      | b) wet isotropic              |           |
|    |       | c) electrochemical                   | d) X-ray lithography          |           |
|    | 4)    | Most microproducts available today a | are                           |           |
|    |       | a) microactuators                    | b) microsensors               |           |
|    |       | c) pumps                             | d) microoptics                |           |
|    | 5)    | can be measured by M                 | IEMS.                         |           |
|    |       | a) relative humidity                 | b) Barometric pressure        |           |
|    |       | c) aviation                          | d) all above                  |           |

| 6)  | The advantages of                        | microneedles use    | ed in drug delivery | y is                |
|-----|------------------------------------------|---------------------|---------------------|---------------------|
|     | a) painters                              |                     |                     |                     |
|     | b) does'nt reach to                      | nerve               |                     |                     |
|     | c) eliminates vibrat                     | ion of the hand     |                     |                     |
|     | d) both a) and b)                        |                     |                     |                     |
| 7)  | MEMS devices are                         | within the range _  |                     |                     |
|     | a) 1 pm – 1nm                            |                     | b) 1 nm – 1 μm      | 1                   |
|     | c) $1 \mu m - 1mm$                       |                     | d) 1mm - 1 cm       |                     |
| 8)  | X-ray lithography is remove parts of     |                     | n electronic indus  | stry to selectively |
|     | a) thick film                            |                     | b) thin film        |                     |
|     | c) resistive layer                       |                     | d) conductive la    | ıyer                |
| 9)  | Chemical deposition in which stream of s | •                   |                     | -                   |
|     | a) reaction                              | b) vapour           | c) gas              | d) liquid           |
| 10) | The most common                          | material for micro  | machining is        |                     |
|     | a) silicon                               | b) germenium        | c) copper           | d) silicon oxide    |
| 11) | techn                                    | ology is used for   | micro array man     | ufacturing.         |
|     | a) photolithography                      | ,                   | b) inkjetting       |                     |
|     | c) contact printing                      |                     | d) all above        |                     |
| 12) | Microbiosensors are                      | e based on          |                     |                     |
|     | a) ions effect                           |                     |                     |                     |
|     | b) ion sensitive field                   | d effect transistor |                     |                     |
|     | c) pieroelectric effe                    | ect                 |                     |                     |
|     | d) magnetic effect                       |                     |                     |                     |
| 13) | Microarrays are also                     | o known as          |                     |                     |
|     | a) bio chips                             | b) DNA chips        | c) gene chips       | d) all of them      |
| 14) | One of the application                   | on of Bulk micron   | nachining is        | sensor.             |
|     | a) SAW sensor                            | b) Resonant         | c) Pressure         | d) Temperature      |
|     |                                          |                     |                     |                     |



| Seat |  |
|------|--|
| No.  |  |

# B.E. (Part – II) (Biomedical Engg.) (New CGPA) Examination, 2018 BIOMEDICAL MICROSYSTEM

Day and Date: Saturday, 19-5-2018

Time: 2.30 p.m. to 5.30 p.m.

#### SECTION - I

### 2. Attempt any four questions:

 $(4 \times 4 = 16)$ 

Marks: 56

- 1) Give properties and applications of poly silicon and silicon dioxide.
- 2) Define and differentiate between surface and bulk micromachining.
- 3) Describe levels of MEMS packaging.
- 4) Discuss with a neat diagram RIE technique.
- 5) Describe process of micro contact printing in detail.

### 3. Attempt any 2 questions:

 $(6 \times 2 = 12)$ 

- 1) Define PVD and discuss two types in detail.
- 2) Discuss with neat diagrams the process steps of photolithography.
- 3) Write a short note on:
  - a) LIGA process steps
  - b) APCVD.

#### SECTION - II

### 4. Attempt any four questions:

 $(4 \times 4 = 16)$ 

- 1) Classify micropumps and explain any two types in detail.
- 2) Describe the concept of drug delivery vehicles.
- 3) Discuss various flow techniques used in  $\mu$ -TAS.
- 4) Describe construction and working of Amperometric biosensor.
- 5) Explain scaling in fluid mechanics and electricity.



5. Attempt any two questions:

 $(6 \times 2 = 12)$ 

- 1) Classify biosensor based on detection techniques. Discuss any one type in detail. Explain immobilization technique is short.
- 2) Discuss fabrication of any one type of microneedle in detail.
- 3) Write a short note on:
  - a) Various microsurgical tools
  - b) PCR and genetic screening.

| Seat |  |
|------|--|
| No.  |  |

Set S

# B.E. (Part – II) (Biomedical Engg.) (New CGPA) Examination, 2018 BIOMEDICAL MICROSYSTEM

Day and Date: Saturday, 19-5-2018 Total Marks: 70

Time: 2.30 p.m. to 5.30 p.m.

- Instructions: 1) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book Page No. 3. Each question carries one mark.
  - 2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

| Dur | atio | n : 30 Minutes                         |                  |                      | Marks: 14           |
|-----|------|----------------------------------------|------------------|----------------------|---------------------|
| 1.  | Ch   | noose the correct ar                   | swer:            |                      | (14×1=14)           |
|     | 1)   | The advantages of                      | microneedles us  | sed in drug delive   | ry is               |
|     |      | a) painters                            |                  |                      |                     |
|     |      | b) does'nt reach to                    | nerve            |                      |                     |
|     |      | c) eliminates vibra                    | tion of the hand |                      |                     |
|     |      | d) both a) and b)                      |                  |                      |                     |
|     | 2)   | MEMS devices are                       | within the range | e                    |                     |
|     |      | a) 1 pm – 1nm                          |                  | b) 1 nm – 1 μr       | n                   |
|     |      | c) $1 \mu m - 1mm$                     |                  | d) 1mm - 1 cm        | 1                   |
|     | 3)   | X-ray lithography is remove parts of   | =                | I in electronic indu | stry to selectively |
|     |      | a) thick film                          |                  | b) thin film         |                     |
|     |      | c) resistive layer                     |                  | d) conductive I      | ayer                |
|     | 4)   | Chemical deposition in which stream of | •                |                      | grow.               |
|     |      | a) reaction                            | b) vapour        | c) gas               | d) liquid           |

| 5)  | The most common material for micromachining is |                       |      |                |                     |
|-----|------------------------------------------------|-----------------------|------|----------------|---------------------|
|     | a) silicon                                     | b) germenium          | c)   | copper         | d) silicon oxide    |
| 6)  | tech                                           | nnology is used for   | mi   | cro array manı | ufacturing.         |
|     | a) photolithograph                             | ny                    | b)   | inkjetting     |                     |
|     | c) contact printing                            |                       | d)   | all above      |                     |
| 7)  | Microbiosensors a                              | re based on           |      |                |                     |
|     | a) ions effect                                 |                       |      |                |                     |
|     | b) ion sensitive fie                           | eld effect transistor |      |                |                     |
|     | c) pieroelectric eff                           | ect                   |      |                |                     |
|     | d) magnetic effect                             |                       |      |                |                     |
| 8)  | Microarrays are als                            | so known as           |      |                |                     |
|     | a) bio chips                                   | b) DNA chips          | c)   | gene chips     | d) all of them      |
| 9)  | One of the applica                             | tion of Bulk micror   | nac  | hining is      | sensor.             |
|     | a) SAW sensor                                  | b) Resonant           | c)   | Pressure       | d) Temperature      |
| 10) | is a                                           | a material removal    | me   | ethod.         |                     |
|     | a) surface microm                              | achining              | b)   | LIGA           |                     |
|     | c) micro stereo lith                           | nography              | d)   | none of abov   | е                   |
| 11) | Combination of                                 | is use                | d to | form sharp po  | oints.              |
|     | a) dry and isotropi                            | ic wet etching        | b)   | dry and an ise | otropic wet etching |
|     | c) a) and b)                                   |                       | d)   | none of abov   | е                   |
| 12) | Focused ion beam                               | milling is            |      | process.       |                     |
|     | a) an isotropic                                |                       | b)   | wet isotropic  |                     |
|     | c) electrochemica                              | I                     | d)   | X-ray lithogra | phy                 |
| 13) | Most microproduct                              | ts available today a  | are  |                |                     |
|     | a) microactuators                              |                       | b)   | microsensors   | 3                   |
|     | c) pumps                                       |                       | d)   | microoptics    |                     |
| 14) | can                                            | be measured by N      | ΛEΝ  | MS.            |                     |
|     | a) relative humidit                            | У                     | b)   | Barometric pi  | ressure             |
|     | c) aviation                                    |                       | d)   | all above      |                     |
|     |                                                |                       |      |                |                     |



| Seat |  |
|------|--|
| No.  |  |

# B.E. (Part – II) (Biomedical Engg.) (New CGPA) Examination, 2018 BIOMEDICAL MICROSYSTEM

Day and Date: Saturday, 19-5-2018

Time: 2.30 p.m. to 5.30 p.m.

Marks: 56

#### SECTION - I

### 2. Attempt any four questions:

 $(4 \times 4 = 16)$ 

- 1) Give properties and applications of poly silicon and silicon dioxide.
- 2) Define and differentiate between surface and bulk micromachining.
- 3) Describe levels of MEMS packaging.
- 4) Discuss with a neat diagram RIE technique.
- 5) Describe process of micro contact printing in detail.

### 3. Attempt any 2 questions:

 $(6 \times 2 = 12)$ 

- 1) Define PVD and discuss two types in detail.
- 2) Discuss with neat diagrams the process steps of photolithography.
- 3) Write a short note on:
  - a) LIGA process steps
  - b) APCVD.

#### SECTION - II

### 4. Attempt any four questions:

 $(4 \times 4 = 16)$ 

- 1) Classify micropumps and explain any two types in detail.
- 2) Describe the concept of drug delivery vehicles.
- 3) Discuss various flow techniques used in  $\mu$ -TAS.
- 4) Describe construction and working of Amperometric biosensor.
- 5) Explain scaling in fluid mechanics and electricity.



5. Attempt any two questions:

 $(6 \times 2 = 12)$ 

- 1) Classify biosensor based on detection techniques. Discuss any one type in detail. Explain immobilization technique is short.
- 2) Discuss fabrication of any one type of microneedle in detail.
- 3) Write a short note on:
  - a) Various microsurgical tools
  - b) PCR and genetic screening.

| SL | .R- | TC | _ | 4 | 6 | 8 |
|----|-----|----|---|---|---|---|
|----|-----|----|---|---|---|---|



| Seat | 2-4 |   |
|------|-----|---|
| No.  | Set | P |

|         | IISSUE ENG                                                                                              | INEERING                                                                                                    |
|---------|---------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| -       | d Date : Tuesday, 22-5-2018<br>2.30 p.m. to 5.30 p.m.                                                   | Max. Marks : 70                                                                                             |
| ,       | minutes in Answe<br>carries one mark.<br>2) Answer MCQ/Obje                                             | er Book Page No. 3. Each question ective type questions on Page No. 3 to mention, Q.P. Set (P/Q/R/S) on Top |
| Duratio | MCQ/Objective T<br>on: 30 Minutes                                                                       | ype Questions<br>Marks : 14                                                                                 |
| 1. Ch   | oose the correct answer :                                                                               | (1×14=14)                                                                                                   |
| ŕ       | than their in vitro counterparts. a) Equal c) Different                                                 | b) Zero d) None of these                                                                                    |
| 2)      | <ul><li>Which of the following is a extracelluma.</li><li>a) Vitronection</li><li>c) Collagen</li></ul> | ılar matrix proteins ?<br>b) Laminin<br>d) All above                                                        |
| 3)      | surfaces can be used two cell types in co-culture system. a) Nanopatterns c) Bit patterns               | to control the initial interface between b) Micropatterns d) Both a) and b)                                 |
| 4)      | Shear rate is expressed in a) cm/s/cm c) Both a) and b)                                                 | b) s <sup>-1</sup><br>d) None                                                                               |
| 5)      | Erythropoeitin production is related of cell  a) Directly c) Zero                                       | b) Equally d) Inversely                                                                                     |



| 6)  | The was the first organa donor individual to an Autologous na) Heart                                                                                                            | n to be successfully transplanted from recipient patient. b) Brain              |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
|     | c) Kidney                                                                                                                                                                       | d) None                                                                         |
| 7)  | Cartilage tissue engg. include a) Only in vivo c) Both a) and b)                                                                                                                | b) Only in vitro<br>d) None                                                     |
| 8)  |                                                                                                                                                                                 | •                                                                               |
| 9)  | are the responsible for the deposition and organization of coa) Adipocytes c) Fibroblast                                                                                        | the synthesis of many GAGS and for<br>bllagen.<br>b) Stem cells<br>d) All above |
| 10) | Chondrocyte is a a) Kidney cell c) Liver cell                                                                                                                                   | b) Blood cell d) Cartilage cell                                                 |
| 11) | Nerve is formed through collection of a) Neurons c) Spinal cord                                                                                                                 | f<br>b) Nerve fibers<br>d) Blood vessels                                        |
| 12) | Mature cells are continuously product a) Stem cells c) Progenitor cells                                                                                                         | ced from b) Stromal cells d) None                                               |
| 13) | When skeletal muscles shortens in ration (a) A decrease in the width of the I bate) A decrease in the width of the A bate) A increase in the width of the H zad) Both b) and c) | and<br>pand                                                                     |
| 14) | Normal human kidney forma) 200 ml<br>c) 10 ml                                                                                                                                   | of filtrate every minute. b) 100 ml d) 500 ml                                   |



| Seat |  |
|------|--|
| No.  |  |

Day and Date: Tuesday, 22-5-2018

Time: 2.30 p.m. to 5.30 p.m.

SECTION - I

2. Answer any four:

 $(4 \times 4 = 16)$ 

Marks: 56

- 1) Explain the reconstruction of connective tissues.
- 2) Explain in detail adult stem cell.
- 3) Explain metabolic requirement for cell using graphical representation.
- 4) Explain gene therapy tissue engg. in vascular biology.
- 5) State advantages and disadvantages of in-vitro and in-vivo tissue engineering.

3. Answer any two:

 $(2 \times 6 = 12)$ 

- 1) Explain different bioreactor design in tissue engineering.
- 2) Explain methodologies and devices used for in-vitro experiments for study of shear stress.
- 3) Explain tissue composition and types of stromal cells.

SECTION - II

4. Answer any four:

 $(4 \times 4 = 16)$ 

- 1) Explain function and organization of hematopoietic system.
- 2) Explain in-vivo cartilage repair.
- 3) Explain tubule reabsorption for kidney function.
- 4) Explain the history of cell culture development.
- 5) Explain basic background study of liver in tissue engineering.

5. Answer any two:

- 1) Explain tissue reconstruction of nervous system with neat diagram.
- 2) Explain injury and repair of skeletal muscle.
- 3) What is bone marrow transplantation? Explain autologous and allogenic bone marrow transplantation.

| SL | .R- | TC | _ | 4 | 6 | 8 |
|----|-----|----|---|---|---|---|
|----|-----|----|---|---|---|---|



| No. Set Q | Seat | 004 |   |
|-----------|------|-----|---|
|           | No.  | Set | Q |

Day and Date: Tuesday, 22-5-2018 Max. Marks: 70

Time: 2.30 p.m. to 5.30 p.m.

Instructions: 1) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book Page No. 3. Each question carries one mark.

2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

|         | or rage.                                                                                                            |                       |                                                              |   |
|---------|---------------------------------------------------------------------------------------------------------------------|-----------------------|--------------------------------------------------------------|---|
|         | MCQ/Objective T                                                                                                     | урє                   | e Questions                                                  |   |
| Duratio | n : 30 Minutes                                                                                                      |                       | Marks: 14                                                    | ļ |
| 1. Ch   | oose the correct answer :                                                                                           |                       | (1×14=14)                                                    | ) |
| 1)      | In adults stem cells are found in dra the Concentration dra a) Cord blood, Decreases c) Peripheral blood, Increases | ma <sup>·</sup><br>b) | tically after stem cell mobilization.  Cord blood, Increases |   |
| 2)      | are the responsible for the deposition and organization of coa) Adipocytes c) Fibroblast                            | olla<br>b)            |                                                              |   |
| 3)      | Chondrocyte is a a) Kidney cell c) Liver cell                                                                       | ,                     | Blood cell Cartilage cell                                    |   |
| 4)      | Nerve is formed through collection of a) Neurons c) Spinal cord                                                     | b)                    | Nerve fibers<br>Blood vessels                                |   |
| 5)      | Mature cells are continuously product a) Stem cells c) Progenitor cells                                             | b)                    | from<br>Stromal cells<br>None                                |   |



| 6)   | When skeletal muscles shortens in real A decrease in the width of the I bab) A decrease in the width of the A bac) A increase in the width of the H zero) Both b) and c) | anc<br>oan | l<br>d                                                              |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------------------------------------------------------------------|
| 7)   | Normal human kidney forma) 200 ml<br>c) 10 ml                                                                                                                            | b)         | of filtrate every minute.<br>100 ml<br>500 ml                       |
| 8)   | Tissue assembled in vitro may have _than their in vitro counterparts.  a) Equal c) Different                                                                             | b)         | Zero None of these                                                  |
| 9)   | Which of the following is a extracellu<br>a) Vitronection<br>c) Collagen                                                                                                 | b)         | matrix proteins ?<br>Laminin<br>All above                           |
| 10)  | surfaces can be used to two cell types in co-culture system.  a) Nanopatterns c) Bit patterns                                                                            | b)         | ontrol the initial interface between  Micropatterns  Both a) and b) |
| l 1) | Shear rate is expressed in a) cm/s/cm c) Both a) and b)                                                                                                                  | ,          | s <sup>-1</sup><br>None                                             |
| 12)  | Erythropoeitin production is related of cell  a) Directly c) Zero                                                                                                        | b)         | gen delivery to the renal interstinal  Equally Inversely            |
| 13)  | The was the first organ<br>a donor individual to an Autologous n<br>a) Heart<br>c) Kidney                                                                                | reci<br>b) |                                                                     |
| 14)  | Cartilage tissue engg. include a) Only in vivo c) Both a) and b)                                                                                                         |            | Only in vitro<br>None                                               |



| Seat |  |
|------|--|
| No.  |  |

Day and Date: Tuesday, 22-5-2018

Time: 2.30 p.m. to 5.30 p.m.

SECTION - I

2. Answer any four:

 $(4 \times 4 = 16)$ 

Marks: 56

- 1) Explain the reconstruction of connective tissues.
- 2) Explain in detail adult stem cell.
- 3) Explain metabolic requirement for cell using graphical representation.
- 4) Explain gene therapy tissue engg. in vascular biology.
- 5) State advantages and disadvantages of in-vitro and in-vivo tissue engineering.

3. Answer any two:

 $(2 \times 6 = 12)$ 

- 1) Explain different bioreactor design in tissue engineering.
- 2) Explain methodologies and devices used for in-vitro experiments for study of shear stress.
- 3) Explain tissue composition and types of stromal cells.

SECTION - II

4. Answer any four:

 $(4 \times 4 = 16)$ 

- 1) Explain function and organization of hematopoietic system.
- 2) Explain in-vivo cartilage repair.
- 3) Explain tubule reabsorption for kidney function.
- 4) Explain the history of cell culture development.
- 5) Explain basic background study of liver in tissue engineering.

5. Answer any two:

- 1) Explain tissue reconstruction of nervous system with neat diagram.
- 2) Explain injury and repair of skeletal muscle.
- 3) What is bone marrow transplantation? Explain autologous and allogenic bone marrow transplantation.

| SLI | R-T | C - | 468 |
|-----|-----|-----|-----|
|-----|-----|-----|-----|



| Seat | 0-4 |   |
|------|-----|---|
| No.  | Set | R |

Day and Date: Tuesday, 22-5-2018 Max. Marks: 70

Time: 2.30 p.m. to 5.30 p.m.

- Instructions: 1) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book Page No. 3. Each question carries one mark.
  - 2) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

| MCQ/Objective                                                                                                          | Type Questions                                                                   |
|------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| Duration : 30 Minutes                                                                                                  | Marks: 14                                                                        |
| 1. Choose the correct answer:                                                                                          | (1×14=14)                                                                        |
| Erythropoeitin production is related cell                                                                              | d oxygen delivery to the renal interstinal                                       |
| a) Directly                                                                                                            | b) Equally                                                                       |
| c) Zero                                                                                                                | d) Inversely                                                                     |
| <ul><li>2) The was the first organized a donor individual to an Autologou</li><li>a) Heart</li><li>c) Kidney</li></ul> | gan to be successfully transplanted from its recipient patient. b) Brain d) None |
| <ul><li>3) Cartilage tissue engg. include</li><li>a) Only in vivo</li><li>c) Both a) and b)</li></ul>                  | b) Only in vitro<br>d) None                                                      |
|                                                                                                                        |                                                                                  |



| 5)  | ) are the responsible for the synthesis of many GAGS and for the deposition and organization of collagen.                                                               |                                                      |  |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|--|
|     | <ul><li>a) Adipocytes</li><li>c) Fibroblast</li></ul>                                                                                                                   | b) Stem cells<br>d) All above                        |  |
| 6)  | Chondrocyte is a a) Kidney cell c) Liver cell                                                                                                                           | b) Blood cell<br>d) Cartilage cell                   |  |
| 7)  | Nerve is formed through collection of a) Neurons c) Spinal cord                                                                                                         | of<br>b) Nerve fibers<br>d) Blood vessels            |  |
| 8)  | Mature cells are continuously product a) Stem cells c) Progenitor cells                                                                                                 | ced from b) Stromal cells d) None                    |  |
| 9)  | When skeletal muscles shortens in rea) A decrease in the width of the I bab) A decrease in the width of the A bac) A increase in the width of the H zed) Both b) and c) | band<br>band                                         |  |
| 10) | Normal human kidney form<br>a) 200 ml<br>c) 10 ml                                                                                                                       | of filtrate every minute. b) 100 ml d) 500 ml        |  |
| 11) | Tissue assembled in vitro may have _ than their in vitro counterparts.  a) Equal c) Different                                                                           | metabolic requirements b) Zero d) None of these      |  |
| 12) | Which of the following is a extracellu<br>a) Vitronection<br>c) Collagen                                                                                                | ular matrix proteins ?<br>b) Laminin<br>d) All above |  |
| 13) | surfaces can be used t<br>two cell types in co-culture system.<br>a) Nanopatterns<br>c) Bit patterns                                                                    | b) Micropatterns                                     |  |
| 14) |                                                                                                                                                                         | d) Both a) and b)                                    |  |



| Seat |  |
|------|--|
| No.  |  |

Day and Date: Tuesday, 22-5-2018

Time: 2.30 p.m. to 5.30 p.m.

SECTION - I

2. Answer any four:

 $(4 \times 4 = 16)$ 

Marks: 56

- 1) Explain the reconstruction of connective tissues.
- 2) Explain in detail adult stem cell.
- 3) Explain metabolic requirement for cell using graphical representation.
- 4) Explain gene therapy tissue engg. in vascular biology.
- 5) State advantages and disadvantages of in-vitro and in-vivo tissue engineering.

3. Answer any two:

 $(2 \times 6 = 12)$ 

- 1) Explain different bioreactor design in tissue engineering.
- 2) Explain methodologies and devices used for in-vitro experiments for study of shear stress.
- 3) Explain tissue composition and types of stromal cells.

SECTION - II

4. Answer any four:

 $(4 \times 4 = 16)$ 

- 1) Explain function and organization of hematopoietic system.
- 2) Explain in-vivo cartilage repair.
- 3) Explain tubule reabsorption for kidney function.
- 4) Explain the history of cell culture development.
- 5) Explain basic background study of liver in tissue engineering.

5. Answer any two:

- 1) Explain tissue reconstruction of nervous system with neat diagram.
- 2) Explain injury and repair of skeletal muscle.
- 3) What is bone marrow transplantation? Explain autologous and allogenic bone marrow transplantation.

| SLR- | <b>ΓC</b> – | 468 |
|------|-------------|-----|
|------|-------------|-----|



c) 10 ml

| Seat | 0.4 |   |
|------|-----|---|
| No.  | Set | S |

# B.E. (Part – II) (Biomedical Engineering) (New CGPA) Examination, 2018 TISSUF FNGINFFRING

|                                                                                        | TISSUE E                                                                   | NGINI                          | EERING                                                                                              |                        |
|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------|--------------------------------|-----------------------------------------------------------------------------------------------------|------------------------|
| Day and Date : Tu<br>Time : 2.30 p.m.                                                  | uesday, 22-5-2018<br>to 5.30 p.m.                                          |                                | M                                                                                                   | lax. Marks : 70        |
| Instruction                                                                            | minutes in Ans<br>carries one mar<br>2) Answer MCQ/C                       | swer E<br>k.<br><b>Objecti</b> | ry. It should be solved<br>Book Page No. 3. Each<br>we type questions on<br>mention, Q.P. Set (P/Q/ | n question  Page No. 3 |
|                                                                                        | MCQ/Objectiv                                                               | е Туре                         | e Questions                                                                                         |                        |
| Duration: 30 Minu                                                                      | utes                                                                       |                                |                                                                                                     | Marks: 14              |
| 1. Choose the c                                                                        | orrect answer :                                                            |                                |                                                                                                     | (1×14=14)              |
| <ol> <li>Chondroc</li> <li>Kidney</li> <li>Liver c</li> <li>Nerve is for a)</li> </ol> | cell<br>ell<br>ormed through collectio                                     | d)<br>n of                     | Blood cell Cartilage cell Nerve fibers                                                              |                        |
| c) Spinal                                                                              | cord                                                                       | d)                             | Blood vessels                                                                                       |                        |
| 3) Mature ce<br>a) Stem c<br>c) Proger                                                 |                                                                            | b)                             | from<br>Stromal cells<br>None                                                                       |                        |
| a) A decr                                                                              | ease in the width of the ease in the width of the ease in the width of the | I band<br>A ban                | d                                                                                                   | e is                   |
| 5) Normal hu<br>a) 200 ml                                                              | -                                                                          |                                | of filtrate every minute<br>100 ml                                                                  |                        |

d) 500 ml



| 6)    | Tissue assembled in vitro may have _ than their in vitro counterparts.                               |     | metabolic requirements                    |
|-------|------------------------------------------------------------------------------------------------------|-----|-------------------------------------------|
|       | <ul><li>a) Equal</li><li>c) Different</li></ul>                                                      | ,   | Zero<br>None of these                     |
| 7)    | <ul><li>Which of the following is a extracellu</li><li>a) Vitronection</li><li>c) Collagen</li></ul> | b)  | matrix proteins ?<br>Laminin<br>All above |
| 8)    | surfaces can be used t                                                                               | •   |                                           |
| • ,   | two cell types in co-culture system.                                                                 |     |                                           |
|       | <ul><li>a) Nanopatterns</li><li>c) Bit patterns</li></ul>                                            | ,   | Micropatterns Both a) and b)              |
| 9)    | Shear rate is expressed in                                                                           |     |                                           |
|       | <ul><li>a) cm/s/cm</li><li>c) Both a) and b)</li></ul>                                               | ,   | s <sup>-1</sup><br>None                   |
| 10)   | Erythropoeitin production is related of                                                              | •   |                                           |
| . • , | cell                                                                                                 | ,   |                                           |
|       | <ul><li>a) Directly</li><li>c) Zero</li></ul>                                                        | -   | Equally<br>Inversely                      |
| 11)   | The was the first organ                                                                              | ,   | •                                         |
| ,     | a donor individual to an Autologous                                                                  |     |                                           |
|       | a) Heart                                                                                             | ,   | Brain                                     |
| 40)   | c) Kidney                                                                                            | a)  | None                                      |
| 12)   | Cartilage tissue engg. include a) Only in vivo                                                       | b)  | Only in vitro                             |
|       | c) Both a) and b)                                                                                    | ,   | None                                      |
| 13)   | In adults stem cells are found in                                                                    |     |                                           |
|       | the Concentration dra<br>a) Cord blood, Decreases                                                    |     |                                           |
|       | c) Peripheral blood, Increases                                                                       | ,   |                                           |
| 14)   | are the responsible for                                                                              | the | synthesis of many GAGS and for            |
|       | the deposition and organization of co                                                                |     | _                                         |
|       | <ul><li>a) Adipocytes</li><li>c) Fibroblast</li></ul>                                                | ,   | Stem cells<br>All above                   |
|       | ,                                                                                                    | ,   |                                           |



| Seat |  |
|------|--|
| No.  |  |

Day and Date: Tuesday, 22-5-2018

Time: 2.30 p.m. to 5.30 p.m.

SECTION - I

2. Answer any four:

 $(4 \times 4 = 16)$ 

Marks: 56

- 1) Explain the reconstruction of connective tissues.
- 2) Explain in detail adult stem cell.
- 3) Explain metabolic requirement for cell using graphical representation.
- 4) Explain gene therapy tissue engg. in vascular biology.
- 5) State advantages and disadvantages of in-vitro and in-vivo tissue engineering.

3. Answer any two:

 $(2 \times 6 = 12)$ 

- 1) Explain different bioreactor design in tissue engineering.
- 2) Explain methodologies and devices used for in-vitro experiments for study of shear stress.
- 3) Explain tissue composition and types of stromal cells.

SECTION - II

4. Answer any four:

 $(4 \times 4 = 16)$ 

- 1) Explain function and organization of hematopoietic system.
- 2) Explain in-vivo cartilage repair.
- 3) Explain tubule reabsorption for kidney function.
- 4) Explain the history of cell culture development.
- 5) Explain basic background study of liver in tissue engineering.

5. Answer any two:

- 1) Explain tissue reconstruction of nervous system with neat diagram.
- 2) Explain injury and repair of skeletal muscle.
- 3) What is bone marrow transplantation? Explain autologous and allogenic bone marrow transplantation.